A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization

进化算法 计算机科学 进化计算 算法 优化算法 数学优化 数学 人工智能
作者
Ran Cheng,Yaochu Jin,Markus Olhofer,Bernhard Sendhoff
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 773-791 被引量:1423
标识
DOI:10.1109/tevc.2016.2519378
摘要

In evolutionary multiobjective optimization, maintaining a good balance between convergence and diversity is particularly crucial to the performance of the evolutionary algorithms (EAs). In addition, it becomes increasingly important to incorporate user preferences because it will be less likely to achieve a representative subset of the Pareto-optimal solutions using a limited population size as the number of objectives increases. This paper proposes a reference vector-guided EA for many-objective optimization. The reference vectors can be used not only to decompose the original multiobjective optimization problem into a number of single-objective subproblems, but also to elucidate user preferences to target a preferred subset of the whole Pareto front (PF). In the proposed algorithm, a scalarization approach, termed angle-penalized distance, is adopted to balance convergence and diversity of the solutions in the high-dimensional objective space. An adaptation strategy is proposed to dynamically adjust the distribution of the reference vectors according to the scales of the objective functions. Our experimental results on a variety of benchmark test problems show that the proposed algorithm is highly competitive in comparison with five state-of-the-art EAs for many-objective optimization. In addition, we show that reference vectors are effective and cost-efficient for preference articulation, which is particularly desirable for many-objective optimization. Furthermore, a reference vector regeneration strategy is proposed for handling irregular PFs. Finally, the proposed algorithm is extended for solving constrained many-objective optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beta发布了新的文献求助10
2秒前
HotKid完成签到,获得积分10
2秒前
3秒前
izzhan发布了新的文献求助10
4秒前
彭于晏应助Noraac采纳,获得10
4秒前
mz完成签到 ,获得积分10
7秒前
dudu完成签到,获得积分20
8秒前
DDDDD发布了新的文献求助10
8秒前
能干的谷蕊完成签到 ,获得积分10
10秒前
爆米花应助加一点荒谬采纳,获得10
12秒前
meng完成签到,获得积分10
12秒前
17秒前
18秒前
20秒前
21秒前
2021完成签到 ,获得积分10
22秒前
23秒前
24秒前
Noraac发布了新的文献求助10
24秒前
尔尔完成签到,获得积分10
25秒前
cbx完成签到,获得积分10
27秒前
27秒前
27秒前
小赵完成签到,获得积分10
27秒前
加一点荒谬完成签到,获得积分10
28秒前
28秒前
Hello应助zhentg采纳,获得10
29秒前
余泽发布了新的文献求助10
30秒前
31秒前
Noraac完成签到,获得积分20
32秒前
bkagyin应助Chelry采纳,获得10
32秒前
32秒前
清枫发布了新的文献求助10
33秒前
怕孤单的幻枫完成签到,获得积分10
34秒前
37秒前
crazy发布了新的文献求助10
37秒前
张雷举报紫腚能行求助涉嫌违规
41秒前
KobeLaoda发布了新的文献求助10
41秒前
华仔应助拼搏惜金采纳,获得10
42秒前
jenningseastera应助Georgechan采纳,获得30
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991847
求助须知:如何正确求助?哪些是违规求助? 3532997
关于积分的说明 11260291
捐赠科研通 3272252
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425