A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization

进化算法 计算机科学 进化计算 算法 优化算法 数学优化 数学 人工智能
作者
Ran Cheng,Yaochu Jin,Markus Olhofer,Bernhard Sendhoff
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 773-791 被引量:1339
标识
DOI:10.1109/tevc.2016.2519378
摘要

In evolutionary multiobjective optimization, maintaining a good balance between convergence and diversity is particularly crucial to the performance of the evolutionary algorithms (EAs). In addition, it becomes increasingly important to incorporate user preferences because it will be less likely to achieve a representative subset of the Pareto-optimal solutions using a limited population size as the number of objectives increases. This paper proposes a reference vector-guided EA for many-objective optimization. The reference vectors can be used not only to decompose the original multiobjective optimization problem into a number of single-objective subproblems, but also to elucidate user preferences to target a preferred subset of the whole Pareto front (PF). In the proposed algorithm, a scalarization approach, termed angle-penalized distance, is adopted to balance convergence and diversity of the solutions in the high-dimensional objective space. An adaptation strategy is proposed to dynamically adjust the distribution of the reference vectors according to the scales of the objective functions. Our experimental results on a variety of benchmark test problems show that the proposed algorithm is highly competitive in comparison with five state-of-the-art EAs for many-objective optimization. In addition, we show that reference vectors are effective and cost-efficient for preference articulation, which is particularly desirable for many-objective optimization. Furthermore, a reference vector regeneration strategy is proposed for handling irregular PFs. Finally, the proposed algorithm is extended for solving constrained many-objective optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小胡爱吃饭关注了科研通微信公众号
1秒前
cosine完成签到,获得积分10
2秒前
云鹏完成签到,获得积分10
3秒前
369小妮完成签到 ,获得积分20
4秒前
5秒前
mbf发布了新的文献求助10
8秒前
李键刚完成签到 ,获得积分10
9秒前
9秒前
zzz完成签到,获得积分10
10秒前
香蕉觅云应助蜗牛星星采纳,获得10
10秒前
10秒前
11秒前
感动秋发布了新的文献求助20
11秒前
12秒前
Nagi果完成签到,获得积分10
13秒前
多情怜蕾发布了新的文献求助10
14秒前
无奈完成签到,获得积分10
15秒前
远山笑你完成签到 ,获得积分10
15秒前
ppw发布了新的文献求助10
15秒前
十里发布了新的文献求助10
17秒前
美嘉美发布了新的文献求助10
19秒前
Ta沓如流星完成签到,获得积分10
19秒前
20秒前
Akim应助雪饼采纳,获得30
21秒前
22秒前
22秒前
coco发布了新的文献求助10
24秒前
居居应助小伊001采纳,获得10
24秒前
24秒前
852应助panda采纳,获得10
24秒前
27秒前
27秒前
mumu发布了新的文献求助10
27秒前
bubble发布了新的文献求助10
28秒前
29秒前
所所应助muyi采纳,获得20
31秒前
勤恳的臻完成签到,获得积分10
32秒前
云瑾应助面向杂志编论文采纳,获得10
32秒前
Hou发布了新的文献求助20
32秒前
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153347
求助须知:如何正确求助?哪些是违规求助? 2804555
关于积分的说明 7860074
捐赠科研通 2462478
什么是DOI,文献DOI怎么找? 1310769
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794