A high-dimensional feature selection method based on modified Gray Wolf Optimization

初始化 计算机科学 特征选择 人工智能 分类器(UML) 模式识别(心理学) 数据挖掘 差异进化 熵(时间箭头) 算法 量子力学 物理 程序设计语言
作者
Hongyu Pan,Shanxiong Chen,Hailing Xiong
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:135: 110031-110031 被引量:84
标识
DOI:10.1016/j.asoc.2023.110031
摘要

For data mining tasks on high-dimensional data, feature selection is a necessary pre-processing stage that plays an important role in removing redundant or irrelevant features and improving classifier performance. The Gray Wolf optimization algorithm is a global search mechanism with promising applications in feature selection, but tends to stagnate in high-dimensional problems with locally optimal solutions. In this paper, a modified gray wolf optimization algorithm is proposed for feature selection of high-dimensional data. The algorithm introduces ReliefF algorithm and Coupla entropy in the initialization process, which effectively improves the quality of the initial population. In addition, modified gray wolf optimization includes two new search strategies: first, a competitive guidance strategy is proposed to update individual positions, which make the algorithm’s search more flexible; second, a differential evolution-based leader wolf enhancement strategy is proposed to find a better position where the leader wolf may exist and replace it, which can prevent the algorithm from falling into local optimum. The results on 10 high-dimensional small-sample gene expression datasets demonstrate that the proposed algorithm selects less than 0.67% of the features, improves the classification accuracy while further reducing the number of features, and obtains very competitive results compared with some advanced feature selection methods. The comprehensive study analysis shows that proposed algorithm better balances the exploration and exploration balance, and the two search strategies are conducive to the improvement of gray wolf optimization search capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
流北爷发布了新的文献求助10
1秒前
开心完成签到,获得积分10
1秒前
gguc发布了新的文献求助10
2秒前
万能图书馆应助okghy采纳,获得10
2秒前
2秒前
怕黑道消完成签到 ,获得积分10
2秒前
王小布完成签到,获得积分10
3秒前
石头发布了新的文献求助10
3秒前
楼下小白龙完成签到,获得积分10
3秒前
润润轩轩发布了新的文献求助10
3秒前
3秒前
Echo完成签到,获得积分10
4秒前
zmmmm发布了新的文献求助10
5秒前
雪山飞龙发布了新的文献求助30
5秒前
5秒前
Jenny应助小土豆采纳,获得50
5秒前
情怀应助布鲁鲁采纳,获得10
5秒前
5秒前
悦耳寒松发布了新的文献求助10
6秒前
6秒前
霍嘉文完成签到,获得积分10
6秒前
7秒前
bluesiryao发布了新的文献求助10
7秒前
李爱国应助23采纳,获得10
8秒前
8秒前
SHJ发布了新的文献求助10
8秒前
开心的幻柏完成签到 ,获得积分10
8秒前
大神完成签到 ,获得积分20
8秒前
8秒前
9秒前
9秒前
闪闪的YOSH完成签到,获得积分10
9秒前
Jimmy完成签到,获得积分10
9秒前
仁爱书白完成签到,获得积分10
10秒前
10秒前
孤独的珩发布了新的文献求助10
11秒前
孙悦完成签到,获得积分10
12秒前
lu完成签到,获得积分10
12秒前
Rachel发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794