H-CNN combined with tissue Raman spectroscopy for cervical cancer detection

人工智能 卷积神经网络 宫颈癌 计算机科学 分类器(UML) 模式识别(心理学) 癌症 内科学 医学
作者
Zhenping Kang,Yizhe Li,Jie Liu,Cheng Chen,Wei Wu,Chen Chen,Xiaoyi Lv,Fei Liang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:291: 122339-122339 被引量:15
标识
DOI:10.1016/j.saa.2023.122339
摘要

Cervical cancer is one of the most common cancers with a long latent period and slow onset process. Early and accurate identification of the stage of cervical cancer can significantly improve the cure rate and patient survival time. In this study, we collected 699 Raman spectral data of tissue sections from 233 different patients. We analyzed and compared the characteristics and differences of the mean Raman spectra of the seven tissues and pointed out the main differences in the biochemical composition of the seven tissues. In this study, 1D hierarchical convolutional neural network (H-CNN) is proposed by integrating the prior knowledge of hierarchical classification relations with the research of deep learning in Raman spectroscopy. H-CNN is based on CNN and is added with three network branches. Hierarchical classification is performed from coarse to fine for tissue samples of cervicitis, Low-grade Squamous Cell Carcinoma, High-grade Squamous Cell Carcinoma, Well Differentiated Squamous Cell Carcinoma, Moderately Differentiated Squamous Cell Carcinoma, Poorly Differentiated Squamous Cell Carcinoma and cervical adenocarcinoma. To evaluate the recognition performance of H-CNN, we compared it with traditional methods such as Bayesian classifier (NB), decision tree classifier (DT), support vector machine classifier (SVM) and CNN. The experimental results show that H-CNN can accurately identify different classes of tissue sections and has apparent advantages in several aspects such as recognition accuracy, stability and sensitivity compared with the other four traditional recognition methods. The classification Macro-Accuracy of H-CNN can reach 94.91%, Macro-Recall can reach 95.31%, Macro-F1 can reach 95.23%, and Macro-AUC can reach 97.35%. The hierarchical classification method proposed in this study can diagnose patients more accurately. This could lay the foundation for further research on Raman spectroscopy as a clinical diagnostic method for cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cy发布了新的文献求助10
1秒前
1秒前
季宇发布了新的文献求助10
3秒前
3秒前
3秒前
orixero应助133采纳,获得10
4秒前
5秒前
bkagyin应助njh采纳,获得10
5秒前
勤恳的灵雁完成签到 ,获得积分10
6秒前
神勇的长颈鹿完成签到 ,获得积分10
6秒前
所所应助坦率含双采纳,获得10
7秒前
7秒前
zhukeqinag发布了新的文献求助10
7秒前
wakaka完成签到,获得积分10
8秒前
地山发布了新的文献求助30
9秒前
IAMXC发布了新的文献求助10
9秒前
9秒前
超级惜芹发布了新的文献求助10
10秒前
牡丹花下发布了新的文献求助10
10秒前
8R60d8应助Jalynn2044采纳,获得10
10秒前
guilin应助欣喜的灵阳采纳,获得10
11秒前
咸鱼完成签到,获得积分10
13秒前
稳重的若雁应助季宇采纳,获得10
13秒前
万松发布了新的文献求助10
13秒前
123发布了新的文献求助10
14秒前
jianning完成签到,获得积分10
15秒前
十月发布了新的文献求助10
15秒前
芋头cc发布了新的文献求助10
15秒前
Hyunjinnn完成签到 ,获得积分10
15秒前
小米稀饭完成签到,获得积分10
18秒前
19秒前
上官若男应助阿腾采纳,获得10
20秒前
小丸子完成签到,获得积分10
21秒前
21秒前
某某完成签到,获得积分10
21秒前
XXXX发布了新的文献求助10
22秒前
hao发布了新的文献求助10
22秒前
深情安青应助Zp采纳,获得10
22秒前
23秒前
泰迪的梦想完成签到,获得积分20
23秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792954
关于积分的说明 7804609
捐赠科研通 2449278
什么是DOI,文献DOI怎么找? 1303129
科研通“疑难数据库(出版商)”最低求助积分说明 626796
版权声明 601291