H-CNN combined with tissue Raman spectroscopy for cervical cancer detection

人工智能 卷积神经网络 宫颈癌 计算机科学 分类器(UML) 模式识别(心理学) 癌症 内科学 医学
作者
Zhenping Kang,Yizhe Li,Jie Liu,Cheng Chen,Wei Wu,Chen Chen,Xiaoyi Lv,Fei Liang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:291: 122339-122339 被引量:15
标识
DOI:10.1016/j.saa.2023.122339
摘要

Cervical cancer is one of the most common cancers with a long latent period and slow onset process. Early and accurate identification of the stage of cervical cancer can significantly improve the cure rate and patient survival time. In this study, we collected 699 Raman spectral data of tissue sections from 233 different patients. We analyzed and compared the characteristics and differences of the mean Raman spectra of the seven tissues and pointed out the main differences in the biochemical composition of the seven tissues. In this study, 1D hierarchical convolutional neural network (H-CNN) is proposed by integrating the prior knowledge of hierarchical classification relations with the research of deep learning in Raman spectroscopy. H-CNN is based on CNN and is added with three network branches. Hierarchical classification is performed from coarse to fine for tissue samples of cervicitis, Low-grade Squamous Cell Carcinoma, High-grade Squamous Cell Carcinoma, Well Differentiated Squamous Cell Carcinoma, Moderately Differentiated Squamous Cell Carcinoma, Poorly Differentiated Squamous Cell Carcinoma and cervical adenocarcinoma. To evaluate the recognition performance of H-CNN, we compared it with traditional methods such as Bayesian classifier (NB), decision tree classifier (DT), support vector machine classifier (SVM) and CNN. The experimental results show that H-CNN can accurately identify different classes of tissue sections and has apparent advantages in several aspects such as recognition accuracy, stability and sensitivity compared with the other four traditional recognition methods. The classification Macro-Accuracy of H-CNN can reach 94.91%, Macro-Recall can reach 95.31%, Macro-F1 can reach 95.23%, and Macro-AUC can reach 97.35%. The hierarchical classification method proposed in this study can diagnose patients more accurately. This could lay the foundation for further research on Raman spectroscopy as a clinical diagnostic method for cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1ssd发布了新的文献求助10
刚刚
667发布了新的文献求助10
刚刚
小二郎应助辰柒采纳,获得10
1秒前
2秒前
2秒前
clear完成签到,获得积分20
2秒前
2秒前
orixero应助congguitar采纳,获得10
2秒前
Evan完成签到,获得积分10
2秒前
YANG发布了新的文献求助10
3秒前
3秒前
123发布了新的文献求助10
3秒前
sunzhiyu233发布了新的文献求助10
4秒前
Raul完成签到 ,获得积分10
4秒前
4秒前
伯尔尼圆白菜完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
buuyoo完成签到,获得积分10
5秒前
科研通AI5应助魏煜佳采纳,获得10
5秒前
LLxiaolong完成签到,获得积分10
5秒前
6秒前
6秒前
巨噬细胞A完成签到,获得积分10
6秒前
6秒前
我要读博士完成签到 ,获得积分10
6秒前
xxq完成签到,获得积分20
6秒前
福气小姐完成签到 ,获得积分10
6秒前
搜集达人应助jjy采纳,获得10
7秒前
7秒前
郑总完成签到,获得积分10
7秒前
CipherSage应助马尼拉采纳,获得10
7秒前
SCI完成签到 ,获得积分10
8秒前
9秒前
healer发布了新的文献求助10
9秒前
123完成签到,获得积分20
10秒前
李健的小迷弟应助yili采纳,获得10
10秒前
L.完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759