亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

H-CNN combined with tissue Raman spectroscopy for cervical cancer detection

人工智能 卷积神经网络 宫颈癌 计算机科学 分类器(UML) 模式识别(心理学) 癌症 内科学 医学
作者
Zhenping Kang,Yizhe Li,Jie Liu,Cheng Chen,Wei Wu,Chen Chen,Xiaoyi Lv,Fei Liang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:291: 122339-122339 被引量:27
标识
DOI:10.1016/j.saa.2023.122339
摘要

Cervical cancer is one of the most common cancers with a long latent period and slow onset process. Early and accurate identification of the stage of cervical cancer can significantly improve the cure rate and patient survival time. In this study, we collected 699 Raman spectral data of tissue sections from 233 different patients. We analyzed and compared the characteristics and differences of the mean Raman spectra of the seven tissues and pointed out the main differences in the biochemical composition of the seven tissues. In this study, 1D hierarchical convolutional neural network (H-CNN) is proposed by integrating the prior knowledge of hierarchical classification relations with the research of deep learning in Raman spectroscopy. H-CNN is based on CNN and is added with three network branches. Hierarchical classification is performed from coarse to fine for tissue samples of cervicitis, Low-grade Squamous Cell Carcinoma, High-grade Squamous Cell Carcinoma, Well Differentiated Squamous Cell Carcinoma, Moderately Differentiated Squamous Cell Carcinoma, Poorly Differentiated Squamous Cell Carcinoma and cervical adenocarcinoma. To evaluate the recognition performance of H-CNN, we compared it with traditional methods such as Bayesian classifier (NB), decision tree classifier (DT), support vector machine classifier (SVM) and CNN. The experimental results show that H-CNN can accurately identify different classes of tissue sections and has apparent advantages in several aspects such as recognition accuracy, stability and sensitivity compared with the other four traditional recognition methods. The classification Macro-Accuracy of H-CNN can reach 94.91%, Macro-Recall can reach 95.31%, Macro-F1 can reach 95.23%, and Macro-AUC can reach 97.35%. The hierarchical classification method proposed in this study can diagnose patients more accurately. This could lay the foundation for further research on Raman spectroscopy as a clinical diagnostic method for cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
doublenine18发布了新的文献求助10
9秒前
刘刘完成签到 ,获得积分10
12秒前
kingsley05完成签到,获得积分10
26秒前
36秒前
量子星尘发布了新的文献求助10
1分钟前
铁瓜李完成签到 ,获得积分10
1分钟前
1分钟前
zoelir发布了新的文献求助10
1分钟前
zoelir完成签到,获得积分10
1分钟前
lingting完成签到,获得积分10
2分钟前
英姑应助zhjl采纳,获得10
2分钟前
2分钟前
lingting发布了新的文献求助10
2分钟前
gszy1975完成签到,获得积分10
2分钟前
2分钟前
矜持完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
Pattis完成签到 ,获得积分10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
国色不染尘完成签到,获得积分10
3分钟前
3分钟前
结实的半双完成签到,获得积分10
3分钟前
3分钟前
芙瑞完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
Azlne完成签到,获得积分10
5分钟前
5分钟前
zhjl发布了新的文献求助10
5分钟前
5分钟前
滕皓轩完成签到 ,获得积分20
5分钟前
6分钟前
清脆语海发布了新的文献求助10
6分钟前
李爱国应助清脆语海采纳,获得10
6分钟前
6分钟前
7分钟前
MiaMia应助科研通管家采纳,获得30
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639739
求助须知:如何正确求助?哪些是违规求助? 4750173
关于积分的说明 15007280
捐赠科研通 4797915
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522896
关于科研通互助平台的介绍 1482574