已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

H-CNN combined with tissue Raman spectroscopy for cervical cancer detection

人工智能 卷积神经网络 宫颈癌 计算机科学 分类器(UML) 模式识别(心理学) 癌症 内科学 医学
作者
Zhenping Kang,Yizhe Li,Jie Liu,Cheng Chen,Wei Wu,Chen Chen,Xiaoyi Lv,Fei Liang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:291: 122339-122339 被引量:25
标识
DOI:10.1016/j.saa.2023.122339
摘要

Cervical cancer is one of the most common cancers with a long latent period and slow onset process. Early and accurate identification of the stage of cervical cancer can significantly improve the cure rate and patient survival time. In this study, we collected 699 Raman spectral data of tissue sections from 233 different patients. We analyzed and compared the characteristics and differences of the mean Raman spectra of the seven tissues and pointed out the main differences in the biochemical composition of the seven tissues. In this study, 1D hierarchical convolutional neural network (H-CNN) is proposed by integrating the prior knowledge of hierarchical classification relations with the research of deep learning in Raman spectroscopy. H-CNN is based on CNN and is added with three network branches. Hierarchical classification is performed from coarse to fine for tissue samples of cervicitis, Low-grade Squamous Cell Carcinoma, High-grade Squamous Cell Carcinoma, Well Differentiated Squamous Cell Carcinoma, Moderately Differentiated Squamous Cell Carcinoma, Poorly Differentiated Squamous Cell Carcinoma and cervical adenocarcinoma. To evaluate the recognition performance of H-CNN, we compared it with traditional methods such as Bayesian classifier (NB), decision tree classifier (DT), support vector machine classifier (SVM) and CNN. The experimental results show that H-CNN can accurately identify different classes of tissue sections and has apparent advantages in several aspects such as recognition accuracy, stability and sensitivity compared with the other four traditional recognition methods. The classification Macro-Accuracy of H-CNN can reach 94.91%, Macro-Recall can reach 95.31%, Macro-F1 can reach 95.23%, and Macro-AUC can reach 97.35%. The hierarchical classification method proposed in this study can diagnose patients more accurately. This could lay the foundation for further research on Raman spectroscopy as a clinical diagnostic method for cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
邓邓完成签到 ,获得积分10
3秒前
鄢懋卿应助认真努力发SCI采纳,获得20
4秒前
5秒前
117发布了新的文献求助10
5秒前
Hello应助清澈水眸采纳,获得10
6秒前
luster完成签到 ,获得积分10
6秒前
乌龟完成签到,获得积分10
8秒前
Skye完成签到 ,获得积分10
10秒前
linkman发布了新的文献求助10
10秒前
闫伯涵发布了新的文献求助30
10秒前
12秒前
100完成签到,获得积分10
21秒前
玄音完成签到,获得积分10
21秒前
22秒前
Charley发布了新的文献求助10
28秒前
Aloha完成签到 ,获得积分10
29秒前
我睡觉不会困12138完成签到 ,获得积分10
30秒前
欣欣完成签到 ,获得积分10
31秒前
31秒前
樱桃完成签到 ,获得积分10
33秒前
狂野忆文发布了新的文献求助10
35秒前
leclerc完成签到,获得积分10
36秒前
39秒前
40秒前
40秒前
40秒前
汉堡包应助科研通管家采纳,获得10
40秒前
自然的电脑完成签到,获得积分10
40秒前
sun完成签到 ,获得积分10
41秒前
清澈水眸发布了新的文献求助10
42秒前
聪明勇敢有力气完成签到 ,获得积分10
44秒前
44秒前
45秒前
47秒前
淡定靖儿完成签到 ,获得积分10
47秒前
香蕉觅云应助科研进化中采纳,获得10
48秒前
PAD发布了新的文献求助10
53秒前
赘婿应助清澈水眸采纳,获得10
54秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965493
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155140
捐赠科研通 3245287
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176