Extremely Robust and Multifunctional Nanocomposite Fibers for Strain‐Unperturbed Textile Electronics

材料科学 纳米复合材料 织物 复合材料 拉伤 数码产品 纳米技术 电气工程 医学 内科学 工程类
作者
Jianfeng Gu,Fengchao Li,YinBo Zhu,Donghui Li,Xue Liu,Bao Wu,HengAn Wu,Xiangqian Fan,Xinyi Ji,Yongsheng Chen,Jiajie Liang
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (15) 被引量:38
标识
DOI:10.1002/adma.202209527
摘要

Textile electronics are needed that can achieve strain-unaltered performance when they undergo irregular and repeated strain deformation. Such strain-unaltered textile electronics require advanced fibers that simultaneously have high functionalities and extreme robustness as fabric materials. Current synthetic nanocomposite fibers based on inorganic matrix have remarkable functionalities but often suffer from low robustness and poor tolerance against crack formation. Here, we present a design for a high-performance multifunctional nanocomposite fiber that is mechanically and electrically robust, which was realized by crosslinking titanium carbide (MXene) nanosheets with a slide-ring polyrotaxane to form an internal mechanically-interlocked network. This inorganic matrix nanocomposite fiber featured distinct strain-hardening mechanical behavior and exceptional load-bearing capability (toughness approaching 60 MJ m-3 and ductility over 27%). It retained 100% of its ductility after cyclic strain loading. Moreover, the high electrical conductivity (>1.1 × 105 S m-1 ) and electrochemical performance (>360 F cm-3 ) of the nanocomposite fiber can be well retained after subjecting the fiber to extensive (>25% strain) and long-term repeated (10 000 cycles) dimensional changes. Such superior robustness allowed for the fabrication of the nanocomposite fibers into various robust wearable devices, such as textile-based electromechanical sensors with strain-unalterable sensing performance and fiber-shaped supercapacitors with invariant electrochemical performance for 10 000 strain loading cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dianze发布了新的文献求助20
刚刚
prosperp举报调研昵称求助涉嫌违规
1秒前
Orange应助冰山采纳,获得20
1秒前
飞在夏夜的猫完成签到,获得积分10
1秒前
2秒前
2秒前
Harry完成签到,获得积分10
3秒前
3秒前
4秒前
bcc应助哭泣的花卷采纳,获得60
4秒前
大模型应助大脸猫采纳,获得10
5秒前
不爱吃韭菜完成签到 ,获得积分10
5秒前
xuxizhen完成签到,获得积分10
6秒前
6秒前
6秒前
雾野与晚风完成签到,获得积分10
6秒前
cc发布了新的文献求助10
6秒前
7秒前
7秒前
球啊球完成签到,获得积分10
8秒前
稻草人完成签到 ,获得积分10
8秒前
甜甜的紫丝完成签到 ,获得积分10
10秒前
xuxizhen发布了新的文献求助10
10秒前
传奇3应助Jewl采纳,获得10
11秒前
ThomasZ完成签到,获得积分10
11秒前
111发布了新的文献求助10
11秒前
酷波er应助俭朴的花卷采纳,获得10
11秒前
yan发布了新的文献求助10
12秒前
12秒前
12秒前
星辰大海应助王某采纳,获得10
12秒前
12秒前
慕青应助dzdzn采纳,获得10
13秒前
跳跃的凌文完成签到 ,获得积分10
14秒前
14秒前
14秒前
gun去学习完成签到,获得积分10
14秒前
15秒前
15秒前
刘嘻嘻发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441880
求助须知:如何正确求助?哪些是违规求助? 3038369
关于积分的说明 8971962
捐赠科研通 2726765
什么是DOI,文献DOI怎么找? 1495670
科研通“疑难数据库(出版商)”最低求助积分说明 691258
邀请新用户注册赠送积分活动 688333