百分位
偏斜
卡钳
队列
统计
人口
医学
数学
几何学
环境卫生
作者
S. Wilson,Mary Kathryn Bohn,André Madsen,Thomas Hundhausen,Khosrow Adeli
标识
DOI:10.1515/cclm-2022-1077
摘要
Marked physiological changes in growth and development present challenges in defining pediatric reference intervals for biomarkers of health and disease. Lambda, Mu, and Sigma (LMS)-based statistical modeling provides a continuous normal distribution by negating skewness and variation, and is commonly used to establish growth charts. Such LMS reference curves are suggested to enhance laboratory test result interpretation. The current study establishes LMS-based continuous reference percentiles for 14 biomarkers in the CALIPER cohort of healthy children and adolescents.Data from healthy children and adolescents aged 1-<19 years were used to establish continuous reference percentiles using a novel LMS-based statistical method, including 2.5th, 25th, 50th, 75th, and 97.5th percentiles. The LMS approach applies a Box-Cox data transformation and summarizes continuous distributions by age via three curves: skewness (Lambda), median (Mu), and coefficient of variation (Sigma).LMS-based percentiles and z-scores were generated for 14 common pediatric biomarkers that demonstrate dynamic concentration patterns with age (e.g., alkaline phosphatase) and/or wherein the magnitude of difference from the population mean may be clinically relevant (e.g., triglycerides). The LMS model captured age- and sex-specific distributions accurately and was not substantially influenced by outlying points.This is the first study to establish LMS-based continuous reference percentiles for biochemical markers in a healthy Canadian pediatric population. The current LMS-based approach builds upon previous continuous reference interval models by providing graded percentiles to improve test result interpretation, particularly with repeated measures over time. This method may assist in facilitating a patient-centered approach to laboratory medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI