已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting injury risk using machine learning in male youth soccer players

人体测量学 数学 接收机工作特性 机器学习 跳跃 垂直跳跃 物理疗法 心理学 统计 医学 计算机科学 物理 量子力学 内科学
作者
Francisco Javier Robles-Palazón,José M Puerta-Callejón,José A. Gámez,Mark De Ste Croix,Antonio Cejudo,Fernando Santonja,Pilar Sainz de Baranda,Francisco Ayala
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:167: 113079-113079
标识
DOI:10.1016/j.chaos.2022.113079
摘要

The aim of this study was twofold: a) to build models using machine learning techniques on data from an extensive screening battery to prospectively predict lower extremity soft tissue (LE-ST) injuries in non-elite male youth soccer players, and b) to compare models' performance scores (i.e., predictive accuracy) to select the best fit. A sample of 260 male youth soccer players from the academies of five different Spanish non-professional clubs completed the follow-up. Players were engaged in a pre-season assessment that covered several personal characteristics (e.g., anthropometric measures), psychological constructs (e.g., trait-anxiety), and physical fitness and neuromuscular measures (e.g., range of motion [ROM], landing kinematics). Afterwards, all LE-ST injuries were monitored over one competitive season. The predictive ability (i.e., area under the receiver operating characteristic curve [AUC] and F-score) of several screening models was analysed and compared to select the one with the highest scores. A total of 45 LE-ST injuries were recorded over the season. The best fit screening model developed (AUC = 0.700, F-score = 0.380) allowed to successfully identify one in two (True Positive rate = 53.7 %) and three in four (True Negative rate = 73.9 %) players at high or low risk of suffering a LE-ST injury throughout the in-season phase, respectively, using a subset of six field-based measures (knee medial displacement in the drop jump, asymmetry in the peak vertical ground reaction force during landing, body mass index, asymmetry in the frontal plane projection angle assessed through the tuck jump, asymmetry in the passive hip internal rotation ROM, and ankle dorsiflexion with the knee extended ROM). Given that these measures require little equipment to be recorded and can be employed quickly (approximately 5–10 min) and easily by trained staff in a single player, the model developed might be included in the injury management strategy for youth soccer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神海发布了新的文献求助10
刚刚
打打应助plh采纳,获得10
1秒前
2秒前
3秒前
3秒前
零零发布了新的文献求助10
3秒前
科研通AI6应助研友_8DWw0Z采纳,获得10
5秒前
6秒前
形容发布了新的文献求助10
7秒前
小L发布了新的文献求助10
7秒前
鱼羊明完成签到 ,获得积分10
8秒前
辰叶发布了新的文献求助10
8秒前
大蟋蟀发布了新的文献求助10
9秒前
儒雅的白桃完成签到 ,获得积分10
10秒前
顾矜应助yhh采纳,获得10
11秒前
12秒前
彭于晏应助形容采纳,获得10
12秒前
扶摇完成签到 ,获得积分10
12秒前
田様应助北风采纳,获得30
13秒前
14秒前
南宫硕完成签到 ,获得积分10
14秒前
15秒前
16秒前
ZJX应助cangmingzi采纳,获得10
16秒前
19秒前
19秒前
ll发布了新的文献求助10
20秒前
20秒前
迪迪子发布了新的文献求助10
21秒前
21秒前
大蟋蟀完成签到,获得积分20
22秒前
共享精神应助mjyluobo采纳,获得10
22秒前
荔枝发布了新的文献求助30
22秒前
23秒前
明明完成签到,获得积分10
23秒前
羊水彤发布了新的文献求助100
23秒前
嘻嘻嘻完成签到 ,获得积分10
24秒前
英俊的铭应助迪迪子采纳,获得10
24秒前
26秒前
文静的匪完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252704
求助须知:如何正确求助?哪些是违规求助? 4416333
关于积分的说明 13749452
捐赠科研通 4288358
什么是DOI,文献DOI怎么找? 2352895
邀请新用户注册赠送积分活动 1349738
关于科研通互助平台的介绍 1309271