Predicting injury risk using machine learning in male youth soccer players

人体测量学 数学 接收机工作特性 机器学习 跳跃 垂直跳跃 物理疗法 心理学 统计 医学 计算机科学 物理 量子力学 内科学
作者
Francisco Javier Robles-Palazón,José M Puerta-Callejón,José A. Gámez,Mark De Ste Croix,Antonio Cejudo,Fernando Santonja,Pilar Sainz de Baranda,Francisco Ayala
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:167: 113079-113079
标识
DOI:10.1016/j.chaos.2022.113079
摘要

The aim of this study was twofold: a) to build models using machine learning techniques on data from an extensive screening battery to prospectively predict lower extremity soft tissue (LE-ST) injuries in non-elite male youth soccer players, and b) to compare models' performance scores (i.e., predictive accuracy) to select the best fit. A sample of 260 male youth soccer players from the academies of five different Spanish non-professional clubs completed the follow-up. Players were engaged in a pre-season assessment that covered several personal characteristics (e.g., anthropometric measures), psychological constructs (e.g., trait-anxiety), and physical fitness and neuromuscular measures (e.g., range of motion [ROM], landing kinematics). Afterwards, all LE-ST injuries were monitored over one competitive season. The predictive ability (i.e., area under the receiver operating characteristic curve [AUC] and F-score) of several screening models was analysed and compared to select the one with the highest scores. A total of 45 LE-ST injuries were recorded over the season. The best fit screening model developed (AUC = 0.700, F-score = 0.380) allowed to successfully identify one in two (True Positive rate = 53.7 %) and three in four (True Negative rate = 73.9 %) players at high or low risk of suffering a LE-ST injury throughout the in-season phase, respectively, using a subset of six field-based measures (knee medial displacement in the drop jump, asymmetry in the peak vertical ground reaction force during landing, body mass index, asymmetry in the frontal plane projection angle assessed through the tuck jump, asymmetry in the passive hip internal rotation ROM, and ankle dorsiflexion with the knee extended ROM). Given that these measures require little equipment to be recorded and can be employed quickly (approximately 5–10 min) and easily by trained staff in a single player, the model developed might be included in the injury management strategy for youth soccer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愣头青完成签到,获得积分10
刚刚
刚刚
1秒前
ljl完成签到,获得积分10
1秒前
想喝奶茶发布了新的文献求助10
1秒前
FAN完成签到,获得积分10
1秒前
bkagyin应助铅笔刀采纳,获得10
1秒前
lxl1996完成签到,获得积分10
1秒前
瘦瘦的鬼神完成签到,获得积分10
2秒前
听闻墨笙发布了新的文献求助30
2秒前
英姑应助江哥采纳,获得10
2秒前
阿科完成签到 ,获得积分10
2秒前
3秒前
长江长完成签到,获得积分20
3秒前
飞快的雅青完成签到 ,获得积分10
4秒前
等待的鞯完成签到 ,获得积分20
4秒前
大胆的娩完成签到,获得积分10
5秒前
田様应助玉玉采纳,获得10
5秒前
Dritsw应助CAAA采纳,获得10
5秒前
东木应助啦啦啦采纳,获得20
5秒前
ZCX完成签到,获得积分10
6秒前
Jasper应助文献自由侠采纳,获得10
6秒前
武状元发布了新的文献求助10
6秒前
LLY发布了新的文献求助20
6秒前
6秒前
彭于彦祖应助zzz采纳,获得20
6秒前
呆鹅喵喵完成签到,获得积分10
7秒前
乘风破浪发布了新的文献求助20
7秒前
彭于晏完成签到,获得积分10
7秒前
大胆的娩发布了新的文献求助10
8秒前
疯少完成签到,获得积分10
8秒前
8秒前
野原x之助完成签到 ,获得积分10
8秒前
CR7应助科研通管家采纳,获得20
8秒前
张菁完成签到,获得积分10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
好运来应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得30
8秒前
Hello应助科研通管家采纳,获得10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968771
求助须知:如何正确求助?哪些是违规求助? 3513646
关于积分的说明 11169065
捐赠科研通 3249011
什么是DOI,文献DOI怎么找? 1794589
邀请新用户注册赠送积分活动 875236
科研通“疑难数据库(出版商)”最低求助积分说明 804740