亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting injury risk using machine learning in male youth soccer players

人体测量学 数学 接收机工作特性 机器学习 跳跃 垂直跳跃 物理疗法 心理学 统计 医学 计算机科学 物理 量子力学 内科学
作者
Francisco Javier Robles-Palazón,José M Puerta-Callejón,José A. Gámez,Mark De Ste Croix,Antonio Cejudo,Fernando Santonja,Pilar Sainz de Baranda,Francisco Ayala
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:167: 113079-113079
标识
DOI:10.1016/j.chaos.2022.113079
摘要

The aim of this study was twofold: a) to build models using machine learning techniques on data from an extensive screening battery to prospectively predict lower extremity soft tissue (LE-ST) injuries in non-elite male youth soccer players, and b) to compare models' performance scores (i.e., predictive accuracy) to select the best fit. A sample of 260 male youth soccer players from the academies of five different Spanish non-professional clubs completed the follow-up. Players were engaged in a pre-season assessment that covered several personal characteristics (e.g., anthropometric measures), psychological constructs (e.g., trait-anxiety), and physical fitness and neuromuscular measures (e.g., range of motion [ROM], landing kinematics). Afterwards, all LE-ST injuries were monitored over one competitive season. The predictive ability (i.e., area under the receiver operating characteristic curve [AUC] and F-score) of several screening models was analysed and compared to select the one with the highest scores. A total of 45 LE-ST injuries were recorded over the season. The best fit screening model developed (AUC = 0.700, F-score = 0.380) allowed to successfully identify one in two (True Positive rate = 53.7 %) and three in four (True Negative rate = 73.9 %) players at high or low risk of suffering a LE-ST injury throughout the in-season phase, respectively, using a subset of six field-based measures (knee medial displacement in the drop jump, asymmetry in the peak vertical ground reaction force during landing, body mass index, asymmetry in the frontal plane projection angle assessed through the tuck jump, asymmetry in the passive hip internal rotation ROM, and ankle dorsiflexion with the knee extended ROM). Given that these measures require little equipment to be recorded and can be employed quickly (approximately 5–10 min) and easily by trained staff in a single player, the model developed might be included in the injury management strategy for youth soccer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Epiphany采纳,获得10
9秒前
向东是大海完成签到,获得积分10
24秒前
29秒前
科研通AI6应助macleod采纳,获得10
31秒前
NattyPoe发布了新的文献求助10
35秒前
Owen应助向东是大海采纳,获得10
38秒前
macleod完成签到,获得积分10
39秒前
完美世界应助好人采纳,获得30
45秒前
纯真的凝安完成签到,获得积分10
53秒前
59秒前
Epiphany发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Luna666完成签到,获得积分10
1分钟前
1分钟前
犬来八荒发布了新的文献求助10
1分钟前
qingfeng完成签到,获得积分10
1分钟前
FashionBoy应助犬来八荒采纳,获得20
1分钟前
lx完成签到,获得积分10
1分钟前
bkagyin应助张璟博采纳,获得10
1分钟前
踏实白柏完成签到 ,获得积分10
2分钟前
2分钟前
明亮的老四完成签到 ,获得积分10
2分钟前
2分钟前
好人发布了新的文献求助30
2分钟前
好人完成签到,获得积分10
2分钟前
2分钟前
可爱的函函应助Epiphany采纳,获得10
3分钟前
3分钟前
张璟博发布了新的文献求助10
3分钟前
犬来八荒发布了新的文献求助20
3分钟前
可爱的函函应助张璟博采纳,获得10
3分钟前
3分钟前
Epiphany发布了新的文献求助10
3分钟前
3分钟前
TXZ06发布了新的文献求助30
3分钟前
3分钟前
冷酷愚志完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634933
求助须知:如何正确求助?哪些是违规求助? 4734317
关于积分的说明 14989509
捐赠科研通 4792669
什么是DOI,文献DOI怎么找? 2559771
邀请新用户注册赠送积分活动 1520077
关于科研通互助平台的介绍 1480136