人体测量学
数学
接收机工作特性
机器学习
跳跃
垂直跳跃
物理疗法
心理学
统计
医学
计算机科学
物理
量子力学
内科学
作者
Francisco Javier Robles-Palazón,José M Puerta-Callejón,José A. Gámez,Mark De Ste Croix,Antonio Cejudo,Fernando Santonja,Pilar Sainz de Baranda,Francisco Ayala
标识
DOI:10.1016/j.chaos.2022.113079
摘要
The aim of this study was twofold: a) to build models using machine learning techniques on data from an extensive screening battery to prospectively predict lower extremity soft tissue (LE-ST) injuries in non-elite male youth soccer players, and b) to compare models' performance scores (i.e., predictive accuracy) to select the best fit. A sample of 260 male youth soccer players from the academies of five different Spanish non-professional clubs completed the follow-up. Players were engaged in a pre-season assessment that covered several personal characteristics (e.g., anthropometric measures), psychological constructs (e.g., trait-anxiety), and physical fitness and neuromuscular measures (e.g., range of motion [ROM], landing kinematics). Afterwards, all LE-ST injuries were monitored over one competitive season. The predictive ability (i.e., area under the receiver operating characteristic curve [AUC] and F-score) of several screening models was analysed and compared to select the one with the highest scores. A total of 45 LE-ST injuries were recorded over the season. The best fit screening model developed (AUC = 0.700, F-score = 0.380) allowed to successfully identify one in two (True Positive rate = 53.7 %) and three in four (True Negative rate = 73.9 %) players at high or low risk of suffering a LE-ST injury throughout the in-season phase, respectively, using a subset of six field-based measures (knee medial displacement in the drop jump, asymmetry in the peak vertical ground reaction force during landing, body mass index, asymmetry in the frontal plane projection angle assessed through the tuck jump, asymmetry in the passive hip internal rotation ROM, and ankle dorsiflexion with the knee extended ROM). Given that these measures require little equipment to be recorded and can be employed quickly (approximately 5–10 min) and easily by trained staff in a single player, the model developed might be included in the injury management strategy for youth soccer.
科研通智能强力驱动
Strongly Powered by AbleSci AI