Advanced AI-driven techniques for fault and transient analysis in high-voltage power systems

瞬态(计算机编程) 计算机科学 功率(物理) 断层(地质) 电压 电力系统 瞬态分析 电气工程 瞬态响应 工程类 物理 生物 操作系统 古生物学 量子力学
作者
Abdul Aziz,Muhammad Zain Yousaf,Renhai Feng,Wajid Khan,Umar Siddique,Mohd Redzuan Ahmad,Muhammad Abbas,Mohit Bajaj,Євген Зайцев
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-90055-7
摘要

Each substation is critically essential to the overall operation of the electrical power system. Potential dangers include thermal stress, noise, slip, trip, fall hazards, animal waste, and nonionizing radiation. These are the causes of joint failures of cables and overhead lines, failure of one or more phases of circuit breakers, and melting of fuses or conductors in one or more phases. These kinds of failures bring about a decline in the substation's level of dependability. On the consumer side, power cannot be received adequately because there are losses in the transmission line. To accomplish the objective of enhancing the voltage profile, the DG must be optimized. The substation's transient analysis utilizing a variety of factors, a study of faults and transients that occur in the substation and their effects using ETAP, and an optimization of a range of parameters using artificial intelligence techniques are all used for this goal. This paper offers the complete simulation of a 500kv substation. The simulation uses advanced software Electrical Transient Analyzer Program (ETAP) with detailed load flow analysis and short circuit study of the 500 kV substation system using ETAP software. From the ETAP-generated load flow details and the short circuit details, which are studied by varying loads or other parameters, these whole simulations are carried out multiple times using real-time data from the past eighteen months. A simulation data set contains data on both standard and different faulty conditions. In the 1st step, the normal and faulty conditions are classified. In the 2nd step, the reasons for fault occurrence include line-to-line, line-to-ground, and double line-to-ground using the Artificial Intelligence technique. In both steps, Catboost performs well, followed by Support Vector Machine and Logistic Regression. In the first step, Catboost classifies normal and faulty conditions with an accuracy of 98%, SVM is 96%, and Logistic regression is 93%. Again, in the 2nd step to identify different faulty conditions, the accuracies of Catboost SVM and Logistic Regression are 97%, 95%, and 92%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ari_Kun发布了新的文献求助10
刚刚
1秒前
1秒前
卷卷516发布了新的文献求助10
2秒前
3秒前
大个应助2113采纳,获得10
3秒前
吡咯爱成环应助果ghj采纳,获得10
4秒前
瀛瀛发布了新的文献求助10
4秒前
西城锡城完成签到,获得积分10
5秒前
天天快乐应助sll采纳,获得10
6秒前
乐观寻绿发布了新的文献求助10
6秒前
6秒前
鲤鱼发布了新的文献求助100
6秒前
Akim应助裴荣华采纳,获得10
7秒前
发发发布了新的文献求助10
7秒前
7秒前
9秒前
serendipity发布了新的文献求助10
10秒前
万能图书馆应助卷卷516采纳,获得10
10秒前
cjh发布了新的文献求助10
11秒前
liberty完成签到,获得积分10
13秒前
14秒前
鲤鱼完成签到,获得积分10
14秒前
桐桐应助科研废物采纳,获得10
15秒前
16秒前
果ghj完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
CipherSage应助难过小懒虫采纳,获得10
19秒前
超级怜寒完成签到,获得积分20
21秒前
sll发布了新的文献求助10
22秒前
Hai发布了新的文献求助10
23秒前
一叶知秋发布了新的文献求助10
23秒前
王子倩完成签到 ,获得积分10
23秒前
顾矜应助今天喝咖啡吗采纳,获得10
24秒前
24秒前
24秒前
小美酱发布了新的文献求助10
25秒前
Jasper应助科研废人采纳,获得10
25秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462848
求助须知:如何正确求助?哪些是违规求助? 3056398
关于积分的说明 9051936
捐赠科研通 2746091
什么是DOI,文献DOI怎么找? 1506817
科研通“疑难数据库(出版商)”最低求助积分说明 696202
邀请新用户注册赠送积分活动 695747