Gendered Artificial Intelligence in Marketing: Behavioral and Neural Insights Into Product Recommendations

产品(数学) 营销 人工神经网络 心理学 业务 计算机科学 人工智能 数学 几何学
作者
Ji-Jer Huang,Ruolei Gu,Yi Feng,Wenbo Luo
出处
期刊:Psychology & Marketing [Wiley]
卷期号:42 (5): 1415-1431 被引量:3
标识
DOI:10.1002/mar.22186
摘要

ABSTRACT Marketing research consistently demonstrates that gender stereotypes influence the effectiveness of product recommendations. When artificial intelligence (AI) agents are designed with gendered features to enhance anthropomorphism, a follow‐up question is whether these agents' recommendations are also shaped by gender stereotypes. To investigate this, the current study employed a shopping task featuring product recommendations (utilitarian vs. hedonic), using both behavioral measures (purchase likelihood, personal interest, and tip amount) and event‐related potential components (P1, N1, P2, N2, P3, and late positive potential) to capture explicit and implicit responses to products recommended by male and female humans, virtual assistants, or robots. The findings revealed that gender stereotypes influenced responses at both levels but in distinct ways. Behaviorally, participants consistently favored female recommenders across all conditions. Additionally, female recommenders received more tips than males for hedonic products in the virtual assistant condition and utilitarian products in the robot condition. Implicitly, the N1 and N2 components reflected a classic gender stereotype from prior research: utilitarian products recommended by male humans elicited greater attention and received more inhibition control. We propose that task design and cultural factors may have contributed to the observed discrepancies between explicit (consumer behaviors) and implicit responses. These findings provide insights for mitigating the impact of gender difference when designing the anthropomorphic appearance of AI agents, which would help the development of more effective marketing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小脑虎本虎完成签到,获得积分10
1秒前
1秒前
任志政完成签到 ,获得积分10
2秒前
Ava应助郑旭辉采纳,获得10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
vvi发布了新的文献求助30
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
miao3718完成签到 ,获得积分10
5秒前
6秒前
无花果应助colin采纳,获得10
6秒前
luckypig完成签到,获得积分10
6秒前
wyf发布了新的文献求助30
7秒前
不知名的呆毛完成签到,获得积分10
7秒前
曾经富完成签到,获得积分10
7秒前
李沐唅完成签到 ,获得积分10
7秒前
8秒前
Ambit完成签到,获得积分20
8秒前
张小完成签到,获得积分20
9秒前
11秒前
TingtingGZ发布了新的文献求助10
11秒前
11秒前
12秒前
claud完成签到 ,获得积分10
13秒前
勤恳元枫完成签到,获得积分10
13秒前
13秒前
14秒前
自由醉薇完成签到 ,获得积分10
15秒前
蔚蓝天空完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
小小的手心完成签到,获得积分10
16秒前
卷卷完成签到,获得积分10
17秒前
18秒前
18秒前
顺利毕业完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952