Gendered Artificial Intelligence in Marketing: Behavioral and Neural Insights Into Product Recommendations

产品(数学) 营销 人工神经网络 心理学 业务 计算机科学 人工智能 数学 几何学
作者
Ji-Jer Huang,Ruolei Gu,Yi Feng,Wenbo Luo
出处
期刊:Psychology & Marketing [Wiley]
卷期号:42 (5): 1415-1431 被引量:3
标识
DOI:10.1002/mar.22186
摘要

ABSTRACT Marketing research consistently demonstrates that gender stereotypes influence the effectiveness of product recommendations. When artificial intelligence (AI) agents are designed with gendered features to enhance anthropomorphism, a follow‐up question is whether these agents' recommendations are also shaped by gender stereotypes. To investigate this, the current study employed a shopping task featuring product recommendations (utilitarian vs. hedonic), using both behavioral measures (purchase likelihood, personal interest, and tip amount) and event‐related potential components (P1, N1, P2, N2, P3, and late positive potential) to capture explicit and implicit responses to products recommended by male and female humans, virtual assistants, or robots. The findings revealed that gender stereotypes influenced responses at both levels but in distinct ways. Behaviorally, participants consistently favored female recommenders across all conditions. Additionally, female recommenders received more tips than males for hedonic products in the virtual assistant condition and utilitarian products in the robot condition. Implicitly, the N1 and N2 components reflected a classic gender stereotype from prior research: utilitarian products recommended by male humans elicited greater attention and received more inhibition control. We propose that task design and cultural factors may have contributed to the observed discrepancies between explicit (consumer behaviors) and implicit responses. These findings provide insights for mitigating the impact of gender difference when designing the anthropomorphic appearance of AI agents, which would help the development of more effective marketing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷晴发布了新的文献求助30
1秒前
2秒前
ting完成签到 ,获得积分10
3秒前
PHW发布了新的文献求助10
3秒前
4秒前
Hlinc发布了新的文献求助30
4秒前
5秒前
6秒前
GBRUCE完成签到,获得积分10
6秒前
万能图书馆应助孙萌萌采纳,获得10
7秒前
7秒前
yyy完成签到 ,获得积分10
8秒前
小乐比完成签到,获得积分10
8秒前
8秒前
bzp完成签到,获得积分10
8秒前
Jiayou Zhang完成签到,获得积分10
9秒前
清脆饼干发布了新的文献求助10
9秒前
聪慧的白猫完成签到,获得积分10
9秒前
WWW发布了新的文献求助10
9秒前
10秒前
12秒前
lll完成签到,获得积分10
13秒前
徐徐完成签到,获得积分10
13秒前
14秒前
14秒前
HTY发布了新的文献求助10
14秒前
15秒前
满意的蜗牛完成签到 ,获得积分10
15秒前
15秒前
hbpu230701发布了新的文献求助10
15秒前
15秒前
yiyi关注了科研通微信公众号
15秒前
jason0023完成签到,获得积分10
16秒前
习惯ing发布了新的文献求助10
16秒前
哈哈哈哈哈哈哈完成签到 ,获得积分10
17秒前
香蕉觅云应助执着的酒窝采纳,获得10
17秒前
漫漫发布了新的文献求助10
18秒前
19秒前
ding应助不要打我采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643099
求助须知:如何正确求助?哪些是违规求助? 4760606
关于积分的说明 15020012
捐赠科研通 4801508
什么是DOI,文献DOI怎么找? 2566806
邀请新用户注册赠送积分活动 1524714
关于科研通互助平台的介绍 1484256