亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gendered Artificial Intelligence in Marketing: Behavioral and Neural Insights Into Product Recommendations

产品(数学) 营销 人工神经网络 心理学 业务 计算机科学 人工智能 数学 几何学
作者
Ji-Jer Huang,Ruolei Gu,Yi Feng,Wenbo Luo
出处
期刊:Psychology & Marketing [Wiley]
标识
DOI:10.1002/mar.22186
摘要

ABSTRACT Marketing research consistently demonstrates that gender stereotypes influence the effectiveness of product recommendations. When artificial intelligence (AI) agents are designed with gendered features to enhance anthropomorphism, a follow‐up question is whether these agents' recommendations are also shaped by gender stereotypes. To investigate this, the current study employed a shopping task featuring product recommendations (utilitarian vs. hedonic), using both behavioral measures (purchase likelihood, personal interest, and tip amount) and event‐related potential components (P1, N1, P2, N2, P3, and late positive potential) to capture explicit and implicit responses to products recommended by male and female humans, virtual assistants, or robots. The findings revealed that gender stereotypes influenced responses at both levels but in distinct ways. Behaviorally, participants consistently favored female recommenders across all conditions. Additionally, female recommenders received more tips than males for hedonic products in the virtual assistant condition and utilitarian products in the robot condition. Implicitly, the N1 and N2 components reflected a classic gender stereotype from prior research: utilitarian products recommended by male humans elicited greater attention and received more inhibition control. We propose that task design and cultural factors may have contributed to the observed discrepancies between explicit (consumer behaviors) and implicit responses. These findings provide insights for mitigating the impact of gender difference when designing the anthropomorphic appearance of AI agents, which would help the development of more effective marketing strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
14秒前
eccentric发布了新的文献求助10
17秒前
20秒前
绿小豆发布了新的文献求助10
21秒前
eccentric完成签到,获得积分10
23秒前
AllenZ发布了新的文献求助10
26秒前
ceci_s完成签到 ,获得积分10
27秒前
小蘑菇应助XXaaxxxx采纳,获得10
31秒前
痴情的明辉完成签到 ,获得积分10
33秒前
35秒前
NiyUBo发布了新的文献求助10
38秒前
40秒前
喜悦的小土豆完成签到 ,获得积分20
46秒前
汉堡包应助科研通管家采纳,获得10
46秒前
文艺易蓉发布了新的文献求助10
47秒前
科研通AI5应助zhxi采纳,获得10
51秒前
可爱的函函应助文艺易蓉采纳,获得10
54秒前
1分钟前
文艺易蓉完成签到,获得积分10
1分钟前
1分钟前
NiyUBo完成签到,获得积分10
1分钟前
FLMXene发布了新的文献求助10
1分钟前
天天快乐应助stella采纳,获得10
1分钟前
NexusExplorer应助FLMXene采纳,获得10
1分钟前
1分钟前
二丙完成签到 ,获得积分10
1分钟前
李健应助lily采纳,获得10
1分钟前
veblem发布了新的文献求助10
1分钟前
1分钟前
stella发布了新的文献求助10
1分钟前
1分钟前
SYLH应助派大星采纳,获得10
1分钟前
XXaaxxxx发布了新的文献求助10
1分钟前
1分钟前
小二郎应助veblem采纳,获得10
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516364
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9240108
捐赠科研通 2793695
什么是DOI,文献DOI怎么找? 1533192
邀请新用户注册赠送积分活动 712599
科研通“疑难数据库(出版商)”最低求助积分说明 707384