α‐Fe2O3 Nanocubes as High‐Performance Anode for Supercapacitor

超级电容器 材料科学 阳极 法拉第效率 电容 纳米材料 电化学 储能 氧化物 化学工程 电极 电流密度 纳米技术 非阻塞I/O 冶金 化学 物理化学 功率(物理) 催化作用 工程类 物理 量子力学 生物化学
作者
Umisha Singh,Manoj Kumar Patra,Amit K. Chakraborty,Shobha Shukla,Sumit Saxena
出处
期刊:Advanced sustainable systems [Wiley]
标识
DOI:10.1002/adsu.202400704
摘要

Abstract The ability to store charge through both Faradaic and non‐Faradaic mechanisms in transition metal oxide‐based nanomaterials have made them a popular choice for use as electrode materials in energy storage devices. Of these nanostructured iron oxides, especially Fe 2 O 3, forms one of the most preferred choices of material as supercapacitor anode due to low cost, non‐toxicity, high abundance and availability of variable oxidation states. In this study, the synthesis of nanostructured Fe 2 O 3 nanocubes is presented via the hydrothermal method using a mixed solvent system. The annealed α‐Fe 2 O 3 nanocubes show a superior specific capacitance of 908 F g −1 as compared to 796 F g −1 for the as prepared samples at a current density of 2A g −1 , The high specific capacity of Fe 2 O 3 nanocubes can be ascribed to the availability and exposure of active sites for charge storage, low charge transfer resistance (Rct) and reversible electrochemical reactions involving Fe 2+ /Fe 3+ ions. Further, the assembled two‐electrode asymmetric device α‐Fe 2 O 3 //NiO shows the energy density of 25.31Wh Kg −1 at a power density of 759.3 W Kg −1 , with capacitance retention of 70% after 1000 cycles. These findings underscore the viability of α‐Fe 2 O 3 nanocubes as a promising material for the development of next‐generation supercapacitors, with profound implications for the advancement of sustainable energy storage solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺顺完成签到,获得积分10
1秒前
1秒前
小马甲应助a1oft采纳,获得10
1秒前
Keke完成签到,获得积分10
1秒前
2秒前
自然秋柳发布了新的文献求助10
2秒前
candy6663339完成签到,获得积分10
2秒前
weiwei完成签到,获得积分10
2秒前
大个应助苗条的山晴采纳,获得10
3秒前
努力发一区完成签到 ,获得积分0
3秒前
蒋时晏应助恶恶么v采纳,获得30
3秒前
4秒前
4秒前
gennp完成签到,获得积分10
4秒前
gg完成签到,获得积分10
4秒前
1111发布了新的文献求助10
4秒前
情怀应助wjh采纳,获得10
5秒前
5秒前
Hey关闭了Hey文献求助
5秒前
学渣向下完成签到,获得积分10
5秒前
咚咚咚发布了新的文献求助10
5秒前
6秒前
willen完成签到,获得积分10
6秒前
6秒前
奇怪的柒完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
文静的枫叶完成签到,获得积分10
8秒前
科目三应助神麒小雪采纳,获得10
8秒前
zzznznnn发布了新的文献求助10
9秒前
pbf发布了新的文献求助20
9秒前
科研通AI5应助有风采纳,获得10
10秒前
Lin完成签到,获得积分10
10秒前
科研通AI5应助肉松小贝采纳,获得10
11秒前
粉色完成签到,获得积分10
11秒前
Ll发布了新的文献求助10
11秒前
11秒前
愉快彩虹发布了新的文献求助10
12秒前
CTL完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759