已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Engineering of CRISPR-Cas PAM recognition using deep learning of vast evolutionary data

清脆的 Cas9 计算机科学 基因组编辑 蛋白质工程 生物信息学 计算生物学 合成生物学 深度学习 限制 基因组工程 人工智能 生物 基因 遗传学 工程类 生物化学 机械工程
作者
Stephen Nayfach,Aadyot Bhatnagar,Andrey Novichkov,Gabriella O. Estevam,Nahye Kim,Emily Hill,Jeffrey A. Ruffolo,Rachel A. Silverstein,Joseph P. Gallagher,Benjamin P. Kleinstiver,Alexander J. Meeske,Peter Cameron,Ali Madani
标识
DOI:10.1101/2025.01.06.631536
摘要

CRISPR-Cas enzymes must recognize a protospacer-adjacent motif (PAM) to edit a genomic site, significantly limiting the range of targetable sequences in a genome. Machine learning-based protein engineering provides a powerful solution to efficiently generate Cas protein variants tailored to recognize specific PAMs. Here, we present Protein2PAM, an evolution-informed deep learning model trained on a dataset of over 45,000 CRISPR-Cas PAMs. Protein2PAM rapidly and accurately predicts PAM specificity directly from Cas proteins across Type I, II, and V CRISPR-Cas systems. Using in silico deep mutational scanning, we demonstrate that the model can identify residues critical for PAM recognition in Cas9 without utilizing structural information. As a proof of concept for protein engineering, we employ Protein2PAM to computationally evolve Nme1Cas9, generating variants with broadened PAM recognition and up to a 50-fold increase in PAM cleavage rates compared to the wild-type under in vitro conditions. This work represents the first successful application of machine learning to achieve customization of Cas enzymes for alternate PAM recognition, paving the way for personalized genome editing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一日落叶发布了新的文献求助10
1秒前
4秒前
光轮2000发布了新的文献求助10
8秒前
科研天才完成签到 ,获得积分10
12秒前
13秒前
诸葛平卉完成签到 ,获得积分10
13秒前
sayshh完成签到 ,获得积分10
15秒前
无限的千凝完成签到 ,获得积分10
15秒前
科研启动完成签到,获得积分10
16秒前
小甑完成签到,获得积分10
19秒前
优美紫槐发布了新的文献求助10
19秒前
27秒前
kangk完成签到 ,获得积分10
27秒前
neao完成签到 ,获得积分10
29秒前
无花果应助烈阳采纳,获得10
39秒前
科目三应助优美紫槐采纳,获得10
47秒前
传奇3应助周钰波采纳,获得20
48秒前
JJ完成签到,获得积分10
49秒前
yummybacon完成签到,获得积分10
51秒前
烈阳完成签到,获得积分10
53秒前
56秒前
56秒前
张小华完成签到,获得积分20
1分钟前
周钰波发布了新的文献求助20
1分钟前
luo发布了新的文献求助10
1分钟前
优秀的大璇完成签到 ,获得积分10
1分钟前
咩咩完成签到,获得积分10
1分钟前
Dr_Fang完成签到,获得积分10
1分钟前
1分钟前
luo完成签到,获得积分10
1分钟前
优美紫槐发布了新的文献求助10
1分钟前
jyy完成签到,获得积分10
1分钟前
红尾伯劳完成签到,获得积分10
1分钟前
爆米花应助淮上有秋山采纳,获得10
1分钟前
学术智子完成签到,获得积分10
1分钟前
tjnksy完成签到,获得积分10
1分钟前
木木发布了新的文献求助10
1分钟前
丘比特应助ABAB采纳,获得10
1分钟前
鱼鱼和石头完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603211
求助须知:如何正确求助?哪些是违规求助? 4688305
关于积分的说明 14853100
捐赠科研通 4687609
什么是DOI,文献DOI怎么找? 2540426
邀请新用户注册赠送积分活动 1506951
关于科研通互助平台的介绍 1471507