Li+ Quasi‐Grotthuss Topochemistry Transport Enables Direct Regeneration of Spent Lithium‐Ion Battery Cathodes

阴极 电化学 材料科学 化学工程 锂(药物) 离子 电池(电) 电极 化学 无机化学 有机化学 热力学 物理化学 医学 功率(物理) 物理 工程类 内分泌学
作者
Kai Jia,Yujia He,Zhihong Piao,Zhenjiang Cao,Mengtian Zhang,Pengfei Li,Zhichao Li,Zhiyuan Jiang,Guorui Yang,Huan Xi,Guangmin Zhou,Wei Tang,Zhiguo Qu,R. Vasant Kumar,Shujiang Ding,Kai Xi
出处
期刊:Angewandte Chemie [Wiley]
被引量:1
标识
DOI:10.1002/anie.202422610
摘要

Direct regeneration of spent lithium‐ion batteries offers economic benefits and a reduced CO2 footprint. Surface prelithiation, particularly through the molten salt method, is critical in enhancing spent cathode repair during high‐temperature annealing. However, the sluggish Li+ transport kinetics, which relies on thermally driven processes in the traditional molten salt methods, limit the prelithiation efficiency and regeneration of spent cathodes. Here, we introduce a special molecular configuration (benzoate) into molten salts that facilitates rapid Li+ transport to the surface of LiNi0.5Co0.2Mn0.3O2 (NCM) via a quasi‐Grotthuss topochemistry mechanism, effectively avoiding the phase transitions that could adversely degrade the electrochemical performance due to insufficient lithiation during the repair process. Computational and experimental analyses reveal that the system enables fast Li+ migration through the topological hopping of benzoate in organic lithium salt, rather than relying solely on thermally driven diffusion, thereby significantly improving the prelithiation and repair efficiency of spent NCM cathodes. Benefiting from the quasi‐Grotthuss Li+ topochemistry transport, the degraded structure and Li vacancies in the spent cathode are effectively eliminated, and the regenerated cathode exhibits good cycling stability comparable to commercial counterparts. The proposed Li+ transport mechanism presents a promising route for the efficient regeneration of spent cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
修辛发布了新的文献求助10
1秒前
fifi完成签到,获得积分10
2秒前
3秒前
无花果应助酷炫悲采纳,获得20
3秒前
潇潇声韵发布了新的文献求助10
3秒前
愤怒的河虾完成签到,获得积分10
4秒前
聪慧的绿兰完成签到,获得积分10
5秒前
XM应助buno采纳,获得30
5秒前
6秒前
6秒前
YuxiLuo发布了新的文献求助10
7秒前
7秒前
希望天下0贩的0应助lizhi采纳,获得10
7秒前
科目三应助大胆砖头采纳,获得20
8秒前
9秒前
10秒前
彭于晏应助985博士采纳,获得10
10秒前
汉堡包应助小a采纳,获得10
10秒前
嘎嘎乱写完成签到,获得积分10
11秒前
俞秋烟发布了新的文献求助10
11秒前
tian发布了新的文献求助10
12秒前
科目三应助xr采纳,获得10
12秒前
电化学小生完成签到,获得积分10
12秒前
13秒前
斯文败类应助净净子采纳,获得10
14秒前
chemly完成签到 ,获得积分10
14秒前
16秒前
MZY发布了新的文献求助30
16秒前
善学以致用应助马赫采纳,获得10
16秒前
JamesPei应助鲜艳的棒棒糖采纳,获得10
16秒前
大个应助原野小年采纳,获得10
16秒前
17秒前
18秒前
18秒前
librahapper发布了新的文献求助10
18秒前
Akim应助河鲸采纳,获得10
19秒前
科研通AI5应助Anxia采纳,获得10
19秒前
浮沉发布了新的文献求助10
20秒前
风中绝悟完成签到,获得积分10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753261
求助须知:如何正确求助?哪些是违规求助? 3296906
关于积分的说明 10096383
捐赠科研通 3011503
什么是DOI,文献DOI怎么找? 1654030
邀请新用户注册赠送积分活动 788571
科研通“疑难数据库(出版商)”最低求助积分说明 752947