已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning in Wastewater Treatment: A Comprehensive Bibliometric Review

废水 污水处理 计算机科学 环境科学 环境工程
作者
Wenjing Yang,Haiyan Li
出处
期刊:ACS ES&T water [American Chemical Society]
标识
DOI:10.1021/acsestwater.4c01047
摘要

Accurate identification and control of wastewater treatment processes are critical for the efficient use of water resources. Advances in online monitoring and computational capabilities have facilitated the integration of artificial intelligence (AI), particularly machine learning (ML), into wastewater treatment systems. This review analyzes 433 studies on ML applications in wastewater treatment from 2000 to 2022 using bibliometric methods, examining research trends, hotspots, and future directions. Since 2015, the field has experienced a significant surge in publications. The United States and Spain are notable for their long-standing contributions, while China, despite entering the field late in 2012, has emerged as the leading contributor in publication volume. Keyword analysis reveals "neural networks" and "artificial neural networks" as the most frequently applied ML techniques, alongside terms like "prediction", "optimization", "fault detection", and "design". Our comprehensive review further shows that ML applications in wastewater treatment primarily focus on feature identification, parameter prediction, anomaly detection, and optimized control with key application scenarios including systems, wastewater, waste gas, and sludge. As the demand for AI in wastewater treatment continues to grow, multimodel integration and in-depth development may become the focus of future research to address multiobjective challenges in wastewater treatment more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr.Joseph发布了新的文献求助10
刚刚
思源应助fenmar采纳,获得10
1秒前
jawa完成签到 ,获得积分10
3秒前
乔达摩悉达多完成签到 ,获得积分10
4秒前
奋斗皮皮虾完成签到,获得积分20
6秒前
会飞的鱼发布了新的文献求助10
6秒前
月下棋语完成签到 ,获得积分10
10秒前
123完成签到 ,获得积分10
11秒前
Dr.Joseph完成签到,获得积分10
11秒前
13秒前
Tina完成签到 ,获得积分10
16秒前
19秒前
20秒前
22秒前
25秒前
kakafan发布了新的文献求助10
26秒前
张文静发布了新的文献求助10
26秒前
拼搏妙竹发布了新的文献求助30
31秒前
呼噜发布了新的文献求助10
31秒前
完美的芙蓉完成签到 ,获得积分10
33秒前
BoscoLin完成签到 ,获得积分10
35秒前
kakafan完成签到,获得积分10
37秒前
37秒前
rachel-yue发布了新的文献求助10
39秒前
41秒前
fangyuan发布了新的文献求助10
41秒前
orixero应助淡淡的小蜜蜂采纳,获得10
43秒前
Fonte发布了新的文献求助10
48秒前
xiangyanhao完成签到,获得积分10
49秒前
rita_sun1969发布了新的文献求助20
49秒前
充电宝应助fangyuan采纳,获得10
51秒前
所所应助呼噜采纳,获得10
52秒前
54秒前
56秒前
57秒前
杨哈哈发布了新的文献求助10
58秒前
59秒前
大模型应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314227
求助须知:如何正确求助?哪些是违规求助? 2946569
关于积分的说明 8530722
捐赠科研通 2622271
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838