Interval Dynamic Harmonic High-Resolution State Estimation for Distribution Networks based on Multi-Source Measurement Data Fusion

传感器融合 计算机科学 融合 区间(图论) 国家(计算机科学) 谐波分析 算法 电子工程 数学 人工智能 工程类 哲学 语言学 组合数学
作者
Tiechao Zhu,Zhenguo Shao,Junjie Lin,Yan Zhang,Feixiong Chen
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:: 1-1
标识
DOI:10.1109/jsen.2024.3517674
摘要

An enormous challenge for the harmonic state estimation of distribution network is how to perceive the complex and varied dynamic harmonics in a higher resolution method. To solve this problem, this paper proposes an interval dynamic harmonic high-resolution state estimation method for distribution network based on multi-source measurement data fusion. Firstly, to obtain the typical high-resolution harmonic measurement information of distribution networks under the limited measurement devices, a selection method for the measurement sites of high-resolution power quality monitoring devices (PQMDs) is proposed based on the harmonic electrical distance. On this basis, a multi-source data fusion method based on the time period inclusion index is proposed to establish hybrid interval measurement datasets. Secondly, to improve the efficiency of interval dynamic harmonic state estimation, the interval intermediate variables are introduced to construct the three-stage hybrid interval harmonic measurement equations. Finally, an interval dynamic harmonic high-resolution state estimation method is proposed based on the predictor-corrector method, the IGG-III robust interval Kalman filter (IGGIII-RIKF) is used as the predictor stage, and the forward-backward interval constraint propagation algorithm (FBICP) is used as the corrector stage to realize interval dynamic harmonic high-resolution state estimation. The effectiveness and feasibility of the proposed method have been demonstrated on the IEEE 33-bus system and the IEEE 118-bus system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jun完成签到 ,获得积分10
刚刚
1秒前
dida完成签到,获得积分10
3秒前
3秒前
张张的张发布了新的文献求助10
3秒前
喃喃发布了新的文献求助10
4秒前
6秒前
MoCh发布了新的文献求助10
6秒前
7秒前
黎洛洛完成签到,获得积分10
8秒前
9秒前
M998完成签到,获得积分10
10秒前
酷波er应助北冥有大鱼采纳,获得30
10秒前
11秒前
小瑶发布了新的文献求助10
12秒前
13秒前
13秒前
刘家成发布了新的文献求助10
13秒前
微风完成签到,获得积分10
14秒前
科研通AI5应助布吉岛采纳,获得10
16秒前
16秒前
万能图书馆应助和谐的斓采纳,获得10
16秒前
akihi完成签到 ,获得积分10
18秒前
18秒前
Lucas应助小泉要发文章采纳,获得30
19秒前
木子木应助科研如喝水采纳,获得20
19秒前
sinohan发布了新的文献求助10
19秒前
李健的小迷弟应助CATH采纳,获得10
20秒前
21秒前
21秒前
MoCh发布了新的文献求助10
21秒前
22秒前
King发布了新的文献求助10
22秒前
22秒前
kevin完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
科研如喝水完成签到,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736171
求助须知:如何正确求助?哪些是违规求助? 3279959
关于积分的说明 10017840
捐赠科研通 2996576
什么是DOI,文献DOI怎么找? 1644187
邀请新用户注册赠送积分活动 781831
科研通“疑难数据库(出版商)”最低求助积分说明 749475