Development and validation of a prognostic nomogram for predicting outcomes in brainstem hemorrhage patients

列线图 医学 逻辑回归 曲线下面积 多元分析 血肿 脑干 内科学 多元统计 放射科 机器学习 计算机科学
作者
Shuo Wei,Longyuan Gu,Yue-chao Fan,Ping Ji,Lan Yang,Fengda Li,Shaolin Mei
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41598-024-80264-x
摘要

Brainstem hemorrhage is a severe neurological condition with high mortality and poor prognosis. This study aims to develop and validate a prognostic model for brainstem hemorrhage to facilitate early prediction of patient outcomes, thereby supporting clinical decision-making. Clinical data from 140 patients with brainstem hemorrhage were collected. A prognostic model was constructed through multivariate logistic regression analysis, and a nomogram was developed for clinical use. The model's performance was evaluated using ROC curves, PR curves, and calibration curves, and was validated through cross-validation and an independent validation cohort. Additionally, decision curve analysis was conducted to assess the model's clinical benefit. The study identified hematoma expansion (adjusted OR = 12.92, 95% CI: 2.39–69.79, P = 0.003), GCS score (adjusted OR = 0.77, 95% CI: 0.63–0.93, P = 0.008), hematoma type (OR = 8.01, 95% CI: 2.02–31.78, P = 0.003), and hematoma volume (OR = 1.75, 95% CI: 1.26–2.43, P = 0.001) as independent risk factors for poor prognosis in patients with brainstem hemorrhage. The nomogram prognostic model demonstrated excellent performance in predicting clinical outcomes, with an AUC of 0.95, outperforming individual predictors (volume: 0.94, type: 0.8, GCS: 0.78, expansion: 0.59). Calibration curves showed a high degree of agreement between the model and the ideal curve. Moreover, decision curve analysis indicated that the model provided significant net clinical benefit. This nomogram can effectively provide a basis for prognostic judgment in brainstem hemorrhage, helping clinicians optimize treatment decisions and improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想搞科研的科研狗完成签到,获得积分10
刚刚
星星完成签到,获得积分10
1秒前
1秒前
1秒前
mmm发布了新的文献求助10
1秒前
xwk发布了新的文献求助10
2秒前
2秒前
黎明锦葵完成签到,获得积分10
2秒前
2秒前
知性的白羊完成签到,获得积分10
2秒前
123完成签到 ,获得积分10
2秒前
jackgu发布了新的文献求助10
3秒前
lingkai完成签到,获得积分10
3秒前
所所应助依依采纳,获得10
4秒前
Whhhhh发布了新的文献求助10
5秒前
无花果应助英勇小李采纳,获得10
5秒前
5秒前
淡然紫寒完成签到,获得积分10
6秒前
途中完成签到,获得积分10
6秒前
6秒前
李健的小迷弟应助pbj采纳,获得10
6秒前
6秒前
易伊澤完成签到,获得积分10
6秒前
6秒前
认真白薇发布了新的文献求助10
7秒前
7秒前
852应助1s采纳,获得10
7秒前
林梦婷发布了新的文献求助10
7秒前
大大大完成签到,获得积分10
7秒前
123关注了科研通微信公众号
7秒前
8秒前
平生完成签到 ,获得积分10
9秒前
年轻夏波发布了新的文献求助10
9秒前
刘若鑫发布了新的文献求助10
9秒前
tlj0808发布了新的文献求助30
10秒前
锂氧发布了新的文献求助10
11秒前
11秒前
11秒前
传统的幻梦完成签到,获得积分10
11秒前
WN完成签到,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3468985
求助须知:如何正确求助?哪些是违规求助? 3062016
关于积分的说明 9077763
捐赠科研通 2752446
什么是DOI,文献DOI怎么找? 1510421
科研通“疑难数据库(出版商)”最低求助积分说明 697807
邀请新用户注册赠送积分活动 697759