Interpretable and explainable predictive machine learning models for data-driven protein engineering

计算机科学 人工智能 机器学习
作者
David Medina-Ortiz,Ashkan Khalifeh,Hoda Anvari-Kazemabad,Mehdi D. Davari
出处
期刊:Biotechnology Advances [Elsevier]
卷期号:79: 108495-108495 被引量:1
标识
DOI:10.1016/j.biotechadv.2024.108495
摘要

Protein engineering through directed evolution and (semi)rational design has become a powerful approach for optimizing and enhancing proteins with desired properties. The integration of artificial intelligence methods has further accelerated protein engineering process by enabling the development of predictive models based on data-driven strategies. However, the lack of interpretability and transparency in these models limits their trustworthiness and applicability in real-world scenarios. Explainable Artificial Intelligence addresses these challenges by providing insights into the decision-making processes of machine learning models, enhancing their reliability and interpretability. Explainable strategies has been successfully applied in various biotechnology fields, including drug discovery, genomics, and medicine, yet its application in protein engineering remains underexplored. The incorporation of explainable strategies in protein engineering holds significant potential, as it can guide protein design by revealing how predictive models function, benefiting approaches such as machine learning-assisted directed evolution. This perspective work explores the principles and methodologies of explainable artificial intelligence, highlighting its relevance in biotechnology and its potential to enhance protein design. Additionally, three theoretical pipelines integrating predictive models with explainable strategies are proposed, focusing on their advantages, disadvantages, and technical requirements. Finally, the remaining challenges of explainable artificial intelligence in protein engineering and future directions for its development as a support tool for traditional protein engineering methodologies are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助lc采纳,获得10
刚刚
刚刚
邓欣怡发布了新的文献求助10
刚刚
1秒前
zheng发布了新的文献求助10
1秒前
2秒前
香蕉觅云应助肚子饿了采纳,获得10
4秒前
4秒前
乐乐应助是草莓采纳,获得10
6秒前
7秒前
hbuhfl完成签到 ,获得积分10
8秒前
Wrong发布了新的文献求助10
8秒前
正直的白羊完成签到 ,获得积分10
9秒前
9秒前
10秒前
科研通AI2S应助终澈采纳,获得10
10秒前
85搏一博应助终澈采纳,获得10
10秒前
MQRR发布了新的文献求助10
11秒前
11秒前
lc发布了新的文献求助10
12秒前
13秒前
13秒前
jevon应助邓欣怡采纳,获得10
14秒前
14秒前
酷波er应助阿童木采纳,获得10
15秒前
federish发布了新的文献求助10
17秒前
liu发布了新的文献求助10
17秒前
小兰完成签到,获得积分10
18秒前
情怀应助Esfuerzo采纳,获得10
18秒前
cctv18应助xuxian采纳,获得10
19秒前
19秒前
冷傲的芾发布了新的文献求助10
19秒前
20秒前
20秒前
季乔完成签到 ,获得积分10
21秒前
23秒前
23秒前
宝宝发布了新的文献求助10
23秒前
超级诗桃完成签到,获得积分20
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247867
求助须知:如何正确求助?哪些是违规求助? 2891062
关于积分的说明 8266031
捐赠科研通 2559319
什么是DOI,文献DOI怎么找? 1388095
科研通“疑难数据库(出版商)”最低求助积分说明 650694
邀请新用户注册赠送积分活动 627581