亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Driving Vehicle Trajectory Tracking Control Based on an Improved Fractional‐Order Super‐Twisting Sliding Mode Control Strategy

控制理论(社会学) 弹道 滑模控制 跟踪(教育) 控制(管理) 模式(计算机接口) 订单(交换) 计算机科学 控制工程 工程类 非线性系统 人工智能 物理 心理学 经济 教育学 财务 天文 量子力学 操作系统
作者
Baosen Ma,Wenhui Pei,Qi Zhang,Yu Zhang
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
标识
DOI:10.1002/rnc.7727
摘要

ABSTRACT Aiming at resolving trajectory tracking control challenges during high‐speed lane changes in intelligent driving vehicles, an innovative fractional‐order sliding mode control approach is introduced in the present study. The control strategy comprises upper and lower‐level controls. First, the upper‐level control designs the vehicle trajectory tracking controller, integrating a non‐singular terminal sliding mode (NTSM) surface with a fractional‐order fast super‐twisted sliding mode control (FOF‐STSMC) algorithm. The NTSM surface properties ensure rapid convergence of the system tracking error to zero within a finite time, while the fractional‐order control extends the control system's regulation range and enhances algorithm flexibility. Additionally, the integration with the super‐twisting algorithm effectively mitigates oscillation issues in the control input, achieving a smooth input. Second, the lower‐level control aims to enhance vehicle driving stability. Utilizing the reference yaw rate, and sideslip angle and accounting for tire force saturation, a fractional‐order sliding mode control (FOSMC) algorithm is developed to compute the external yaw moment. Through dynamic load allocation, considering the vertical load for each tire, intelligent external yaw moment distribution significantly improves vehicle stability. Finally, the results of the Carsim–Simulink co‐simulation demonstrate that, compared to the STSMC strategy, the FOSMC strategy with front‐wheel‐only steering, and the linear quadratic regulator (LQR) control strategy, the proposed control strategy in this paper reduces the tracking error by 77%, 61%, and 58%, respectively, achieving more precise and stable trajectory tracking under high‐speed conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷冷完成签到 ,获得积分10
1秒前
P_Chem完成签到,获得积分10
9秒前
11秒前
科研通AI2S应助朴素的如豹采纳,获得10
16秒前
Qi应助与其会意采纳,获得30
18秒前
Qi应助与其会意采纳,获得30
18秒前
Qi应助与其会意采纳,获得30
18秒前
Qi应助与其会意采纳,获得30
18秒前
Qi应助与其会意采纳,获得30
18秒前
Qi应助与其会意采纳,获得30
18秒前
26秒前
Qi应助与其会意采纳,获得30
30秒前
Qi应助与其会意采纳,获得30
30秒前
Qi应助与其会意采纳,获得30
30秒前
Qi应助与其会意采纳,获得30
30秒前
Qi应助与其会意采纳,获得30
30秒前
Qi应助与其会意采纳,获得30
30秒前
Qi应助与其会意采纳,获得30
30秒前
Qi应助与其会意采纳,获得30
30秒前
Qi应助与其会意采纳,获得30
30秒前
科研通AI2S应助与其会意采纳,获得10
30秒前
姚老表完成签到,获得积分10
32秒前
汉堡包应助Marco_hxkq采纳,获得10
33秒前
54秒前
55秒前
Marco_hxkq发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
圈圈黄完成签到,获得积分10
1分钟前
娇气的珩发布了新的文献求助10
1分钟前
科目三应助Marco_hxkq采纳,获得10
1分钟前
1分钟前
传奇3应助一个人玩不好玩采纳,获得10
1分钟前
CodeCraft应助多多采纳,获得10
1分钟前
善学以致用应助Sunlty采纳,获得30
1分钟前
丘比特应助joker采纳,获得30
1分钟前
2分钟前
多多发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580357
求助须知:如何正确求助?哪些是违规求助? 3149873
关于积分的说明 9479277
捐赠科研通 2851379
什么是DOI,文献DOI怎么找? 1567759
邀请新用户注册赠送积分活动 734253
科研通“疑难数据库(出版商)”最低求助积分说明 720558