Prototype-assisted multiscale graph representation learning-based mechanical fault detection method under complex operating conditions

故障检测与隔离 自编码 计算机科学 提取器 图形 代表(政治) 异常检测 人工智能 特征学习 模式识别(心理学) 无监督学习 特征(语言学) 数据挖掘 深度学习 工程类 理论计算机科学 政治 哲学 语言学 工艺工程 执行机构 法学 政治学
作者
Wei Xiang,Shujie Liu,Hongkun Li,Chen Yang,Shunxin Cao,Kongliang Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241291268
摘要

Effective anomaly detection and timely fault warning are essential to ensure the continuous and safe operation of mechanical equipment and to prevent equipment deterioration. In the unsupervised modeling and detection scenario, fault detection methods based on the autoencoder framework have been widely concerned and applied. Unfortunately, such methods can only be applied to specific or constant operating conditions, and their detection performance is greatly reduced due to the different data distribution in the face of complex operating conditions. Aiming at the problem of unsupervised fault detection under complex operating conditions, this article proposes a prototype-assisted multiscale graph representation learning-based mechanical fault detection method. First, the vibration data of the equipment is fed into the multiscale decomposition module (MDM) to obtain multiscale feature maps that can express rich detail information. Then, the multiscale feature maps are fed into the graph representation learning module (GRLM) to fully learn the potential relationships and interactions between different scales and provide a more comprehensive representation of the dynamic characteristics of the equipment. Finally, multiple MDMs and GRLMs are cascaded to construct a feature extractor to map the data of each operating condition to the latent space, and the proposed prototype-assisted strategy is used to determine the real-time state of the equipment. Case studies have been carried out on two different pieces of mechanical equipment. The experimental results show that the average accuracy of the proposed method is as high as 98.44% and 98.90%, respectively, and it maintains a low missed detection rate and zero false alarm rate in the two validation processes, which is more in line with the needs of engineering applications than other comparison methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助苗条念云采纳,获得10
1秒前
Ava应助七yy采纳,获得10
1秒前
无私大白发布了新的文献求助10
2秒前
yyy完成签到,获得积分10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
平常天宇完成签到,获得积分20
2秒前
Steve完成签到 ,获得积分10
3秒前
fufu发布了新的文献求助10
3秒前
xixi发布了新的文献求助30
5秒前
5秒前
yyy完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
wkyt完成签到 ,获得积分10
10秒前
核桃发布了新的文献求助10
10秒前
11秒前
酷波er应助xiaokezhang采纳,获得10
11秒前
科研小能手完成签到,获得积分10
12秒前
12秒前
武武发布了新的文献求助10
12秒前
Owen应助lulufighting采纳,获得10
13秒前
上官若男应助肖鹏采纳,获得10
13秒前
丘比特应助谨慎的凝丝采纳,获得10
13秒前
Party发布了新的文献求助10
14秒前
15秒前
赘婿应助平常天宇采纳,获得30
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
苗条念云发布了新的文献求助10
16秒前
17秒前
七yy发布了新的文献求助10
18秒前
双硫仑完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728831
求助须知:如何正确求助?哪些是违规求助? 5314940
关于积分的说明 15315299
捐赠科研通 4875926
什么是DOI,文献DOI怎么找? 2619096
邀请新用户注册赠送积分活动 1568732
关于科研通互助平台的介绍 1525223