Prototype-assisted multiscale graph representation learning-based mechanical fault detection method under complex operating conditions

故障检测与隔离 自编码 计算机科学 提取器 图形 代表(政治) 异常检测 人工智能 特征学习 模式识别(心理学) 无监督学习 特征(语言学) 数据挖掘 深度学习 工程类 理论计算机科学 语言学 哲学 工艺工程 政治 法学 政治学 执行机构
作者
Wei Xiang,Shujie Liu,Hongkun Li,Chen Yang,Shunxin Cao,Kongliang Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241291268
摘要

Effective anomaly detection and timely fault warning are essential to ensure the continuous and safe operation of mechanical equipment and to prevent equipment deterioration. In the unsupervised modeling and detection scenario, fault detection methods based on the autoencoder framework have been widely concerned and applied. Unfortunately, such methods can only be applied to specific or constant operating conditions, and their detection performance is greatly reduced due to the different data distribution in the face of complex operating conditions. Aiming at the problem of unsupervised fault detection under complex operating conditions, this article proposes a prototype-assisted multiscale graph representation learning-based mechanical fault detection method. First, the vibration data of the equipment is fed into the multiscale decomposition module (MDM) to obtain multiscale feature maps that can express rich detail information. Then, the multiscale feature maps are fed into the graph representation learning module (GRLM) to fully learn the potential relationships and interactions between different scales and provide a more comprehensive representation of the dynamic characteristics of the equipment. Finally, multiple MDMs and GRLMs are cascaded to construct a feature extractor to map the data of each operating condition to the latent space, and the proposed prototype-assisted strategy is used to determine the real-time state of the equipment. Case studies have been carried out on two different pieces of mechanical equipment. The experimental results show that the average accuracy of the proposed method is as high as 98.44% and 98.90%, respectively, and it maintains a low missed detection rate and zero false alarm rate in the two validation processes, which is more in line with the needs of engineering applications than other comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shushu发布了新的文献求助10
刚刚
1秒前
2秒前
slayers应助张雨采纳,获得10
3秒前
木头杨发布了新的文献求助10
3秒前
3秒前
雪雪发布了新的文献求助30
3秒前
0077完成签到,获得积分20
3秒前
Ava应助HJJHJH采纳,获得10
4秒前
我是老大应助qxy采纳,获得10
5秒前
5秒前
AiX-zzzzz发布了新的文献求助10
5秒前
6秒前
笑嘻嘻发布了新的文献求助10
6秒前
林慧凡完成签到,获得积分10
7秒前
7秒前
XuP完成签到,获得积分20
7秒前
大模型应助peng采纳,获得10
7秒前
充电泽完成签到,获得积分10
8秒前
aura发布了新的文献求助10
8秒前
9秒前
阳光书雪发布了新的文献求助10
9秒前
KKKK完成签到,获得积分10
9秒前
XYHH发布了新的文献求助10
9秒前
不是省油的灯完成签到 ,获得积分10
10秒前
大模型应助陌路孤星采纳,获得10
10秒前
last炫神丶发布了新的文献求助200
10秒前
Balance Man完成签到 ,获得积分10
11秒前
小不溜发布了新的文献求助10
11秒前
我陈雯雯实名上网完成签到,获得积分10
11秒前
深情安青应助乔迎晓采纳,获得10
12秒前
还没想好完成签到,获得积分10
12秒前
balko发布了新的文献求助10
12秒前
小蘑菇应助QMZ采纳,获得10
12秒前
12秒前
fuuuu呼呼完成签到,获得积分10
13秒前
13秒前
15秒前
spirit发布了新的文献求助10
15秒前
YBR关闭了YBR文献求助
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974358
求助须知:如何正确求助?哪些是违规求助? 3518706
关于积分的说明 11195521
捐赠科研通 3254897
什么是DOI,文献DOI怎么找? 1797614
邀请新用户注册赠送积分活动 877011
科研通“疑难数据库(出版商)”最低求助积分说明 806128