Prototype-assisted multiscale graph representation learning-based mechanical fault detection method under complex operating conditions

故障检测与隔离 自编码 计算机科学 提取器 图形 代表(政治) 异常检测 人工智能 特征学习 模式识别(心理学) 无监督学习 特征(语言学) 数据挖掘 深度学习 工程类 理论计算机科学 政治 哲学 语言学 工艺工程 执行机构 法学 政治学
作者
Wei Xiang,Shujie Liu,Hongkun Li,Chen Yang,Shunxin Cao,Kongliang Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241291268
摘要

Effective anomaly detection and timely fault warning are essential to ensure the continuous and safe operation of mechanical equipment and to prevent equipment deterioration. In the unsupervised modeling and detection scenario, fault detection methods based on the autoencoder framework have been widely concerned and applied. Unfortunately, such methods can only be applied to specific or constant operating conditions, and their detection performance is greatly reduced due to the different data distribution in the face of complex operating conditions. Aiming at the problem of unsupervised fault detection under complex operating conditions, this article proposes a prototype-assisted multiscale graph representation learning-based mechanical fault detection method. First, the vibration data of the equipment is fed into the multiscale decomposition module (MDM) to obtain multiscale feature maps that can express rich detail information. Then, the multiscale feature maps are fed into the graph representation learning module (GRLM) to fully learn the potential relationships and interactions between different scales and provide a more comprehensive representation of the dynamic characteristics of the equipment. Finally, multiple MDMs and GRLMs are cascaded to construct a feature extractor to map the data of each operating condition to the latent space, and the proposed prototype-assisted strategy is used to determine the real-time state of the equipment. Case studies have been carried out on two different pieces of mechanical equipment. The experimental results show that the average accuracy of the proposed method is as high as 98.44% and 98.90%, respectively, and it maintains a low missed detection rate and zero false alarm rate in the two validation processes, which is more in line with the needs of engineering applications than other comparison methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子完成签到,获得积分10
刚刚
1秒前
tl521004完成签到,获得积分10
1秒前
网易乐完成签到,获得积分20
2秒前
2秒前
2秒前
CodeCraft应助Eileen采纳,获得10
3秒前
照桥心美完成签到,获得积分10
4秒前
4秒前
balabala发布了新的文献求助10
6秒前
网易乐发布了新的文献求助10
6秒前
chhzz完成签到 ,获得积分10
7秒前
田様应助义气的妙松采纳,获得10
7秒前
Yifan2024应助lingling采纳,获得30
7秒前
秋天发布了新的文献求助10
8秒前
万能图书馆应助东2022采纳,获得10
10秒前
11秒前
12秒前
12秒前
13秒前
SilentRP完成签到,获得积分10
13秒前
Jasper应助老实憨厚的笑笑采纳,获得10
15秒前
Lily发布了新的文献求助10
16秒前
16秒前
16秒前
火星上的枕头完成签到 ,获得积分10
16秒前
罗红豆发布了新的文献求助10
17秒前
17秒前
玲玲发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
SciGPT应助网易乐采纳,获得10
18秒前
19秒前
LiuXianBao完成签到,获得积分10
19秒前
南街初晴完成签到,获得积分10
20秒前
hhh发布了新的文献求助10
21秒前
东2022发布了新的文献求助10
22秒前
研友_8WO978完成签到,获得积分10
22秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466496
求助须知:如何正确求助?哪些是违规求助? 3059287
关于积分的说明 9065817
捐赠科研通 2749768
什么是DOI,文献DOI怎么找? 1508697
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696804