Prototype-assisted multiscale graph representation learning-based mechanical fault detection method under complex operating conditions

故障检测与隔离 自编码 计算机科学 提取器 图形 代表(政治) 异常检测 人工智能 特征学习 模式识别(心理学) 无监督学习 特征(语言学) 数据挖掘 深度学习 工程类 理论计算机科学 语言学 哲学 工艺工程 政治 法学 政治学 执行机构
作者
Wei Xiang,Shujie Liu,Hongkun Li,Chen Yang,Shunxin Cao,Kongliang Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241291268
摘要

Effective anomaly detection and timely fault warning are essential to ensure the continuous and safe operation of mechanical equipment and to prevent equipment deterioration. In the unsupervised modeling and detection scenario, fault detection methods based on the autoencoder framework have been widely concerned and applied. Unfortunately, such methods can only be applied to specific or constant operating conditions, and their detection performance is greatly reduced due to the different data distribution in the face of complex operating conditions. Aiming at the problem of unsupervised fault detection under complex operating conditions, this article proposes a prototype-assisted multiscale graph representation learning-based mechanical fault detection method. First, the vibration data of the equipment is fed into the multiscale decomposition module (MDM) to obtain multiscale feature maps that can express rich detail information. Then, the multiscale feature maps are fed into the graph representation learning module (GRLM) to fully learn the potential relationships and interactions between different scales and provide a more comprehensive representation of the dynamic characteristics of the equipment. Finally, multiple MDMs and GRLMs are cascaded to construct a feature extractor to map the data of each operating condition to the latent space, and the proposed prototype-assisted strategy is used to determine the real-time state of the equipment. Case studies have been carried out on two different pieces of mechanical equipment. The experimental results show that the average accuracy of the proposed method is as high as 98.44% and 98.90%, respectively, and it maintains a low missed detection rate and zero false alarm rate in the two validation processes, which is more in line with the needs of engineering applications than other comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jonas发布了新的文献求助10
刚刚
老鱼娜娜完成签到,获得积分20
刚刚
Guomin发布了新的文献求助10
1秒前
2秒前
晚晨完成签到 ,获得积分10
2秒前
along完成签到,获得积分10
2秒前
3秒前
机智翼发布了新的文献求助10
3秒前
踏月偷心发布了新的文献求助10
4秒前
xutong de完成签到,获得积分10
4秒前
4秒前
今后应助无昵称采纳,获得10
4秒前
科研通AI5应助可乐兑雪碧采纳,获得10
5秒前
好好学习完成签到 ,获得积分10
5秒前
5秒前
km完成签到,获得积分10
6秒前
Angew来来来完成签到,获得积分10
6秒前
凛冬发布了新的文献求助10
6秒前
花轻完成签到,获得积分10
6秒前
传奇3应助快乐的水绿采纳,获得20
7秒前
星川发布了新的文献求助10
7秒前
lzsxjd完成签到,获得积分20
9秒前
9秒前
娇气的背包完成签到,获得积分10
10秒前
fu完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
FashionBoy应助三水采纳,获得10
12秒前
13秒前
隐形曼青应助Luu采纳,获得10
13秒前
凛冬完成签到,获得积分10
13秒前
starry完成签到,获得积分10
14秒前
14秒前
14秒前
kiki发布了新的文献求助10
15秒前
YHHHH应助小白一枚采纳,获得20
15秒前
Yola发布了新的文献求助10
15秒前
芒果发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970172
求助须知:如何正确求助?哪些是违规求助? 3514982
关于积分的说明 11176568
捐赠科研通 3250212
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875702
科研通“疑难数据库(出版商)”最低求助积分说明 805004