Optimisation of an oxygen supply prediction model based on the K-nearest neighbours (KNN) algorithm using the Pearson correlation coefficient

皮尔逊积矩相关系数 k-最近邻算法 相关系数 算法 相关性 计算机科学 数据挖掘 统计 数学 人工智能 机器学习 几何学
作者
Qian Peng,Dingdong Fan,Xingshe Zhou,Yunjin Xia,Yujie Liu
出处
期刊:Ironmaking & Steelmaking [Taylor & Francis]
标识
DOI:10.1177/03019233241306282
摘要

Accurately predicting the oxygen supply in the basic oxygen furnace (BOF) steelmaking process is crucial for improving product quality, enhancing production efficiency and reducing costs. In this study, oxygen supply prediction models based on the K-nearest neighbours (KNN) algorithm were developed and compared using actual production data from the BOF. To further improve the accuracy of oxygen supply predictions for the BOF, this study optimises the algorithm using two methods: distance weighting and feature vector weighting based on the Pearson correlation coefficient. Experimental results indicate that the feature vector weighting method based on the Pearson correlation coefficient achieves better optimisation results compared to the distance weighting KNN algorithm. The prediction accuracy for oxygen supply reached 77.6% for an oxygen consumption error within ±200 Nm 3 , 89.8% for ±300 Nm 3 , and 95.7% for ±400 Nm 3 ; additionally, this optimisation improved the endpoint hit rate for oxygen supply by 10.3% compared to the original algorithm. This model provides an effective reference for actual production and offers reliable insights for optimising other algorithms. Future research could further explore the application of other machine learning algorithms in oxygen supply prediction to achieve higher accuracy and broader applicability, thereby advancing the intelligent development of the BOF steelmaking process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助服部平次采纳,获得10
刚刚
长情诗蕊发布了新的文献求助10
刚刚
梨炒栗子发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
浮游应助典雅的俊驰采纳,获得10
3秒前
ybigwhite应助科研通管家采纳,获得10
3秒前
ybigwhite应助科研通管家采纳,获得10
3秒前
ybigwhite应助科研通管家采纳,获得10
3秒前
ybigwhite应助科研通管家采纳,获得10
3秒前
ybigwhite应助科研通管家采纳,获得10
4秒前
ybigwhite应助科研通管家采纳,获得10
4秒前
ybigwhite应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得30
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
ybigwhite应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
小登有点der完成签到,获得积分10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
xzy998应助科研通管家采纳,获得30
6秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143861
求助须知:如何正确求助?哪些是违规求助? 4341664
关于积分的说明 13521235
捐赠科研通 4182119
什么是DOI,文献DOI怎么找? 2293295
邀请新用户注册赠送积分活动 1293823
关于科研通互助平台的介绍 1236563