Integrated machine learning reveals the role of tryptophan metabolism in clear cell renal cell carcinoma and its association with patient prognosis

生物 免疫疗法 癌症研究 重编程 免疫系统 恶性肿瘤 肿瘤微环境 转录组 细胞 生物信息学 免疫学 基因表达 基因 遗传学
作者
Fan Li,Haiyi Hu,Liyang Li,Lifeng Ding,Zeyi Lu,Xudong Mao,Ruyue Wang,Wenqin Luo,Yudong Lin,Yang Li,Xianjiong Chen,Ziwei Zhu,Yi Lu,Chenhao Zhou,Tong Wang,Liqun Xia,Gonghui Li,Lei Gao
出处
期刊:Biology Direct [Springer Nature]
卷期号:19 (1)
标识
DOI:10.1186/s13062-024-00576-w
摘要

Precision oncology's implementation in clinical practice faces significant constraints due to the inadequacies in tools for detailed patient stratification and personalized treatment methodologies. Dysregulated tryptophan metabolism has emerged as a crucial factor in tumor progression, encompassing immune suppression, proliferation, metastasis, and metabolic reprogramming. However, its precise role in clear cell renal cell carcinoma (ccRCC) remains unclear, and predictive models or signatures based on tryptophan metabolism are conspicuously lacking. The influence of tryptophan metabolism on tumor cells was explored using single-cell RNA sequencing data. Genes involved in tryptophan metabolism were identified across both single-cell and bulk-cell dimensions through weighted gene co-expression network analysis (WGCNA) and its single-cell data variant (hdWGCNA). Subsequently, a tryptophan metabolism-related signature was developed using an integrated machine-learning approach. This signature was then examined in multi-omics data to assess its associations with patient clinical features, prognosis, cancer malignancy-related pathways, immune microenvironment, genomic characteristics, and responses to immunotherapy and targeted therapy. Finally, the genes within the signature were validated through experiments including qRT-PCR, Western blot, CCK8 assay, and transwell assay. Dysregulated tryptophan metabolism was identified as a potential driver of the malignant transformation of normal epithelial cells. The tryptophan metabolism-related signature (TMRS) demonstrated robust predictive capability for overall survival (OS) and progression-free survival (PFS) across multiple datasets. Moreover, a high TMRS risk score correlated with increased tumor malignancy, significant metabolic reprogramming, an inflamed yet dysfunctional immune microenvironment, heightened genomic instability, resistance to immunotherapy, and increased sensitivity to certain targeted therapeutics. Experimental validation revealed differential expression of genes within the signature between RCC and adjacent normal tissues, with reduced expression of DDAH1 linked to enhanced proliferation and metastasis of tumor cells. This study investigated the potential impact of dysregulated tryptophan metabolism on clear cell renal cell carcinoma, leading to the development of a tryptophan metabolism-related signature that may provide insights into patient prognosis, tumor biological status, and personalized treatment strategies. This signature serves as a valuable reference for further exploring the role of tryptophan metabolism in renal cell carcinoma and for the development of clinical applications based on this metabolic pathway.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiyi完成签到,获得积分10
1秒前
薛妖怪发布了新的文献求助10
1秒前
李健的小迷弟应助冰块儿采纳,获得10
2秒前
3秒前
VV发布了新的文献求助10
3秒前
orixero应助关中人采纳,获得30
3秒前
4秒前
4秒前
汉堡包应助愉快尔冬采纳,获得10
5秒前
6秒前
玄黄大世界完成签到,获得积分10
6秒前
7秒前
7秒前
mage发布了新的文献求助10
7秒前
刘浩冉发布了新的文献求助10
10秒前
10秒前
10秒前
yyywwwddd333发布了新的文献求助30
10秒前
11秒前
11秒前
深情安青应助pamela采纳,获得10
11秒前
小巧曲奇发布了新的文献求助10
12秒前
香蕉觅云应助小楠采纳,获得10
12秒前
12秒前
Hosea发布了新的文献求助10
13秒前
小菇完成签到,获得积分10
13秒前
mhpvv发布了新的文献求助10
14秒前
华仔应助三井库里采纳,获得10
14秒前
乐观期待发布了新的文献求助10
14秒前
阿卡波糖完成签到,获得积分10
15秒前
15秒前
15秒前
冰块儿发布了新的文献求助10
15秒前
研友_Z6Qrbn完成签到,获得积分10
16秒前
Owen应助小林采纳,获得30
17秒前
小菇发布了新的文献求助10
17秒前
英俊的铭应助缥缈的紫青采纳,获得10
17秒前
暮尘尘发布了新的文献求助10
18秒前
田様应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466394
求助须知:如何正确求助?哪些是违规求助? 3059156
关于积分的说明 9065091
捐赠科研通 2749616
什么是DOI,文献DOI怎么找? 1508644
科研通“疑难数据库(出版商)”最低求助积分说明 696987
邀请新用户注册赠送积分活动 696733