Prediction of Hepatocellular Carcinoma After Hepatitis C Virus Sustained Virologic Response Using a Random Survival Forest Model

肝细胞癌 累积发病率 医学 内科学 入射(几何) 随机森林 队列 丙型肝炎病毒 肿瘤科 胃肠病学 机器学习 免疫学 数学 病毒 计算机科学 几何学
作者
Hikaru Nakahara,Atsushi Ono,C. Nelson Hayes,Yuki Shirane,Ryoichi Miura,Yasutoshi Fujii,Serami Murakami,Kenji Yamaoka,Hongmei Bao,Shinsuke Uchikawa,Hatsue Fujino,Eisuke Murakami,Tomokazu Kawaoka,Daiki Miki,Masataka Tsuge,Shiro Oka,Takahiro Kinami,Takashi Moriya,Kei Morio,Kei Amioka,Yoshitaka Nabeshima,Shigeki Yano,Keiichi Masaki,Yosuke Suehiro,Yasuyuki Aisaka,Michihiro Nonaka,Shiomi Aimitsu,Keitaro Yamashina,Akira Hiramatsu,Hiroshi Aikata,Takashi Nakahara,Yumi Kosaka,Keiji Tsuji,Nami Mori,Shintaro Takaki,K. Ohya,Yoshio Katamura,Hajime Amano,Hiroiku Kawakami,Yoshiiku Kawakami,Takahiro Azakami,Hirotaka Kohno,Yuji Teraoka,Kazunari Masuda,Toru Tamura,Yuko Nagaoki,Shinsuke Kira,Keiko Ueda,Hiroyuki Ito,Chihiro Kikugawa,K. Kamada,Kensuke Naruto,Keiko Arataki
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/cci.24.00108
摘要

PURPOSE Postsustained virologic response (SVR) screening following clinical guidelines does not address individual risk of hepatocellular carcinoma (HCC). Our aim is to provide tailored screening for patients using machine learning to predict HCC incidence after SVR. METHODS Using clinical data from 1,028 SVR patients, we developed an HCC prediction model using a random survival forest (RSF). Model performance was assessed using Harrel's c-index and validated in an independent cohort of 737 SVR patients. Shapley additive explanation (SHAP) facilitated feature quantification, whereas optimal cutoffs were determined using maximally selected rank statistics. We used Kaplan-Meier analysis to compare cumulative HCC incidence between risk groups. RESULTS We achieved c-index scores and 95% CIs of 0.90 (0.85 to 0.94) and 0.80 (0.74 to 0.85) in the derivation and validation cohorts, respectively, in a model using platelet count, gamma-glutamyl transpeptidase, sex, age, and ALT. Stratification resulted in four risk groups: low, intermediate, high, and very high. The 5-year cumulative HCC incidence rates and 95% CIs for these groups were as follows: derivation: 0% (0 to 0), 3.8% (0.6 to 6.8), 26.2% (17.2 to 34.3), and 54.2% (20.2 to 73.7), respectively, and validation: 0.7% (0 to 1.6), 7.1% (2.7 to 11.3), 5.2% (0 to 10.8), and 28.6% (0 to 55.3), respectively. CONCLUSION The integration of RSF and SHAP enabled accurate HCC risk classification after SVR, which may facilitate individualized HCC screening strategies and more cost-effective care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助siuu采纳,获得10
刚刚
研友_8KKkb8应助沉默幻天采纳,获得20
2秒前
阔达金鱼发布了新的文献求助10
2秒前
幸福听芹应助单纯的映真采纳,获得10
3秒前
3秒前
3秒前
wshiyu完成签到 ,获得积分10
5秒前
pipi发布了新的文献求助10
5秒前
跑快点发布了新的文献求助10
5秒前
萧七七发布了新的文献求助10
5秒前
zzzzxxxxzzzz发布了新的文献求助20
6秒前
wuyisha完成签到,获得积分10
7秒前
rachel03发布了新的文献求助10
7秒前
wfy完成签到,获得积分10
7秒前
莉亚发布了新的文献求助10
8秒前
xiaoyi发布了新的文献求助10
9秒前
superworm1发布了新的文献求助10
10秒前
大模型应助lh大号采纳,获得10
11秒前
11秒前
今天不学习明天变垃圾完成签到,获得积分10
13秒前
科研疯狗发布了新的文献求助10
14秒前
望仔完成签到,获得积分10
15秒前
Gao完成签到,获得积分10
16秒前
luoxiaotu198发布了新的文献求助10
16秒前
123完成签到 ,获得积分10
16秒前
semigreen完成签到 ,获得积分10
16秒前
16秒前
苹果丑应助萧七七采纳,获得50
16秒前
阿轩完成签到,获得积分10
16秒前
17秒前
斯文败类应助铁观音采纳,获得10
17秒前
深情安青应助欣慰听南采纳,获得10
21秒前
李大发完成签到,获得积分10
21秒前
longzhixin完成签到,获得积分10
22秒前
22秒前
wuxunxun2015发布了新的文献求助10
22秒前
pipi完成签到,获得积分10
23秒前
zhangbh1990完成签到 ,获得积分10
23秒前
23秒前
sybil发布了新的文献求助10
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262967
求助须知:如何正确求助?哪些是违规求助? 2903657
关于积分的说明 8326071
捐赠科研通 2573529
什么是DOI,文献DOI怎么找? 1398397
科研通“疑难数据库(出版商)”最低求助积分说明 654153
邀请新用户注册赠送积分活动 632707