FNI-DETR: Real-time DETR with far and near feature interaction for small object detection

计算机科学 目标检测 人工智能 编码器 特征提取 变压器 数据挖掘 模式识别(心理学) 工程类 电压 电气工程 操作系统
作者
Z.J. Han,Dongli Jia,Lei Zhang,Jinjiang Li,Pan Cheng
出处
期刊:Engineering research express [IOP Publishing]
标识
DOI:10.1088/2631-8695/ada489
摘要

Abstract In recent years, real-time object detectors have gained significant traction in domains such as autonomous driving, industrial inspection, and remote sensing. The Detection Transformer has emerged as a research focal point due to its end-to-end architecture that eliminates the need for post-processing. However, due to the Transformer’s tendency to focus on global information, small objects are often overlooked. To address this limitation, we propose FNI-DETR, a real-time Detection Transformer tailored for small object detection by incorporating Far and Near Feature Interaction. Specifically, FNI-DETR integrates state space models with the Transformer to form a Mamba-Encoder block, enabling the interaction of feature information across different spatial scales. This enhances the representation and learning of near-end information while improving the extraction of semantic information. Additionally, we introduce a Lightweight Spatial Attention block in the backbone stage to capture detailed information in regions of interest. Furthermore, the ADOWN block is employed for downsampling, reducing the likelihood of discarding small objects from the feature map and increasing the model's focus on small objects. Experimental results show that FNI-DETR achieves an average precision(mAP50:95) of 49.5% on the COCO val2017 dataset, which is 4.2% higher than the Real-Time Detection Transformer (RT-DETR) and 1.7% higher than the YOLOv10-L network. The detection results for small targets also reach 31.7% APs. Moreover, our network achieves a real-time detection speed of 116 FPS on the COCO dataset. On the VisDrone 2019 test dataset, FNI-DETR's mAP50 and mAP50:95 achieved 37.4% and 21.7%, reaching the SOTA detection level. Our code is made available at https://github.com/hzx-123-wq/FNI-DETR/tree/master/FNI-DETR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
安笙凉城发布了新的文献求助10
2秒前
NexusExplorer应助娟娟采纳,获得10
4秒前
烟花应助杜兰特采纳,获得10
5秒前
一直发布了新的文献求助10
7秒前
赘婿应助高源源采纳,获得10
8秒前
lr完成签到 ,获得积分10
8秒前
123456hhh完成签到,获得积分10
8秒前
翻斗花园爆破手小胡完成签到,获得积分10
9秒前
李健的小迷弟应助钱罐罐采纳,获得10
10秒前
11秒前
11秒前
思源应助欢乐谷采纳,获得10
12秒前
杜兰特发布了新的文献求助10
17秒前
17秒前
666应助寒冷水卉采纳,获得10
17秒前
根根发布了新的文献求助10
18秒前
可爱的香岚完成签到 ,获得积分10
21秒前
东郭寄灵发布了新的文献求助10
21秒前
23秒前
24秒前
玩笑话完成签到,获得积分10
26秒前
cwy发布了新的文献求助10
27秒前
30秒前
666应助一直采纳,获得10
30秒前
加菲丰丰应助cwy采纳,获得10
31秒前
lulalula完成签到,获得积分10
35秒前
35秒前
36秒前
42秒前
43秒前
勤劳莹芝完成签到 ,获得积分20
45秒前
3210592完成签到 ,获得积分10
45秒前
科研通AI2S应助根根采纳,获得10
45秒前
明亮紫易完成签到,获得积分10
46秒前
48秒前
WZJ发布了新的文献求助10
49秒前
50秒前
勤劳莹芝关注了科研通微信公众号
50秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361