Design and Control of a Multimodal Compliant Actuator Based on a Scissor-Epicyclic Mechanism for Wearable Robotics

执行机构 机器人学 机制(生物学) 可穿戴计算机 人工智能 计算机科学 控制工程 人机交互 康复机器人 工程类 机器人 嵌入式系统 物理 量子力学
作者
Tianci Wang,Yuxin Liu,Wei Xia,Chunhua Liu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tie.2024.3519606
摘要

Developing wearable robotic actuators by imitating the fiber activation patterns is an encouraging way to improve the performance of wearable robotics. Existing wearable robotic actuation systems cannot provide efficient assistance and accurate force delivery for human users. In this article, we develop a bionic multimodal compliant actuation system based on a scissor-epicyclic clutch mechanism that can provide fast twitch fibers (FTFs) contraction assistance, slow twitch fibers (STFs) contraction assistance or almost transform into a transparent device efficiently. In addition, a novel disturbance-observer-based virtual sliding mode torque controller (DVSMC) is designed to accurately control the output torque by eliminating unexpected external disturbance during the clutch engagement process. Comparative experimental results reveal that, under conditions without load disturbance, with load disturbance, and with time-varying load disturbance, the torque tracking error of the proposed controller is decreased by more than 60% compared with that of contrastive controllers, and the energy consumption is reduced by more than 50% compared with that of the conventional one. Finally, the experimental tests conducted on the human subject demonstrate the effectiveness of fast multimodal switching assistance and precise assistive torque delivery of the proposed wearable robotic system when interacting with human. This study highlights the significance of functional bionic design in wearable devices for human motion assistance and provides a brand-new actuation solution that could be introduced to the emerging biomimetic robot field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SCISSH完成签到 ,获得积分10
刚刚
FEI发布了新的文献求助10
1秒前
科研通AI5应助奔奔采纳,获得10
2秒前
星辰大海应助八八采纳,获得20
2秒前
gaga发布了新的文献求助10
2秒前
木子加y发布了新的文献求助10
2秒前
大大泡泡完成签到,获得积分10
3秒前
852应助zhui采纳,获得10
4秒前
芒果发布了新的文献求助10
4秒前
5秒前
前百年253完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
xiaoguai完成签到 ,获得积分10
7秒前
甜蜜晓绿发布了新的文献求助10
9秒前
9秒前
Bruce发布了新的文献求助10
9秒前
10秒前
10秒前
MYhang完成签到,获得积分10
10秒前
wxd发布了新的文献求助10
12秒前
12秒前
哈哈发布了新的文献求助10
13秒前
13秒前
西哈哈发布了新的文献求助10
13秒前
科研通AI5应助lili采纳,获得10
13秒前
郑嘻嘻完成签到,获得积分10
13秒前
13秒前
FEI完成签到,获得积分20
13秒前
15秒前
英姑应助顺利的乐枫采纳,获得10
15秒前
15秒前
15秒前
16秒前
木子加y完成签到 ,获得积分10
17秒前
小蘑菇应助Sally采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794