Non‐Invasive Diagnosis of Moyamoya Disease Using Serum Metabolic Fingerprints and Machine Learning

烟雾病 计算机科学 疾病 人工智能 医学 机器学习 内科学
作者
Ruiyuan Weng,Yudian Xu,Xinjie Gao,Linlin Cao,Jiabin Su,Heng Yang,He Li,Chenhuan Ding,Jun Pu,Meng Zhang,Jiheng Hao,Wei Xu,Wei Ni,Kun Qian,Yuxiang Gu
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202405580
摘要

Moyamoya disease (MMD) is a progressive cerebrovascular disorder that increases the risk of intracranial ischemia and hemorrhage. Timely diagnosis and intervention can significantly reduce the risk of new-onset stroke in patients with MMD. However, the current diagnostic methods are invasive and expensive, and non-invasive diagnosis using biomarkers of MMD is rarely reported. To address this issue, nanoparticle-enhanced laser desorption/ionization mass spectrometry (LDI MS) was employed to record serum metabolic fingerprints (SMFs) with the aim of establishing a non-invasive diagnosis method for MMD. Subsequently, a diagnostic model was developed based on deep learning algorithms, which exhibited high accuracy in differentiating the MMD group from the HC group (AUC = 0.958, 95% CI of 0.911 to 1.000). Additionally, hierarchical clustering analysis revealed a significant association between SMFs across different groups and vascular cognitive impairment in MMD. This approach holds promise as a novel and intuitive diagnostic method for MMD. Furthermore, the study may have broader implications for the diagnosis of other neurological disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助yqb采纳,获得10
1秒前
认真灯泡发布了新的文献求助10
1秒前
iVANPENNY应助奶昔采纳,获得10
2秒前
科研通AI2S应助奋斗的绮山采纳,获得10
3秒前
iNk应助wenjian采纳,获得10
3秒前
4秒前
景Q同学发布了新的文献求助10
5秒前
南笙完成签到,获得积分10
6秒前
完美世界应助科研通管家采纳,获得10
7秒前
wen应助科研通管家采纳,获得10
7秒前
mhl11应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
mhl11应助科研通管家采纳,获得10
7秒前
8秒前
毛豆应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
mhl11应助科研通管家采纳,获得10
8秒前
wen应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
都是发布了新的文献求助10
8秒前
8秒前
SZH发布了新的文献求助10
9秒前
研友_VZG7GZ应助单纯的思松采纳,获得10
9秒前
10秒前
NexusExplorer应助xue采纳,获得10
11秒前
appapp发布了新的文献求助10
11秒前
找文献呢完成签到,获得积分10
11秒前
12秒前
景Q同学完成签到,获得积分10
13秒前
13秒前
chHe完成签到,获得积分10
13秒前
14秒前
15秒前
老仙翁完成签到,获得积分10
15秒前
kk完成签到,获得积分10
16秒前
ys发布了新的文献求助10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312412
求助须知:如何正确求助?哪些是违规求助? 2945030
关于积分的说明 8522726
捐赠科研通 2620818
什么是DOI,文献DOI怎么找? 1433096
科研通“疑难数据库(出版商)”最低求助积分说明 664837
邀请新用户注册赠送积分活动 650217