Using a Bodily Weight-Fat Scale for Cuffless Blood Pressure Measurement Based on the Edge Computing System

血压 计算机科学 医学 人工智能 生物医学工程 心脏病学 内科学
作者
Shing-Hong Liu,Bo-Yan Wu,Xin Zhu,Chiun-Li Chin
出处
期刊:Sensors [MDPI AG]
卷期号:24 (23): 7830-7830
标识
DOI:10.3390/s24237830
摘要

Blood pressure (BP) measurement is a major physiological information for people with cardiovascular diseases, such as hypertension, heart failure, and atherosclerosis. Moreover, elders and patients with kidney disease and diabetes mellitus also are suggested to measure their BP every day. The cuffless BP measurement has been developed in the past 10 years, which is comfortable to users. Now, ballistocardiogram (BCG) and impedance plethysmogram (IPG) could be used to perform the cuffless BP measurement. Thus, the aim of this study is to realize edge computing for the BP measurement in real time, which includes measurements of BCG and IPG signals, digital signal process, feature extraction, and BP estimation by machine learning algorithm. This system measured BCG and IPG signals from a bodily weight-fat scale with the self-made circuits. The signals were filtered to reduce the noise and segmented by 2 s. Then, we proposed a flowchart to extract the parameter, pulse transit time (PTT), within each segment. The feature included two calibration-based parameters and one calibration-free parameter was used to estimate BP with XGBoost. In order to realize the system in STM32F756ZG NUCLEO development board, we limited the hyperparameters of XGBoost model, including maximum depth (max_depth) and tree number (n_estimators). Results show that the error of systolic blood pressure (SBP) and diastolic blood pressure (DBP) in server-based computing are 2.64 ± 9.71 mmHg and 1.52 ± 6.32 mmHg, and in edge computing are 2.2 ± 10.9 mmHg and 1.87 ± 6.79 mmHg. This proposed method significantly enhances the feasibility of bodily weight-fat scale in the BP measurement for effective utilization in mobile health applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leo完成签到,获得积分10
刚刚
火星上的泡芙完成签到,获得积分10
1秒前
阡陌完成签到,获得积分10
1秒前
hj123完成签到,获得积分10
2秒前
2秒前
风信子完成签到,获得积分10
3秒前
CAST1347完成签到,获得积分10
3秒前
339564965完成签到,获得积分10
4秒前
ricown完成签到,获得积分10
4秒前
ccc完成签到,获得积分10
5秒前
桥豆麻袋完成签到,获得积分10
5秒前
xiaoguang li完成签到,获得积分10
5秒前
peng完成签到,获得积分10
6秒前
木康薛完成签到,获得积分10
6秒前
只想顺利毕业的科研狗完成签到,获得积分10
6秒前
123456完成签到 ,获得积分10
6秒前
Helios完成签到,获得积分10
6秒前
健忘的金完成签到,获得积分10
7秒前
喜悦的依琴完成签到,获得积分10
7秒前
xueshidaheng完成签到,获得积分0
7秒前
文刀发布了新的文献求助10
8秒前
chhzz完成签到 ,获得积分10
8秒前
efengmo完成签到,获得积分10
8秒前
yangy115完成签到,获得积分0
9秒前
BK_201完成签到,获得积分10
9秒前
abiorz完成签到,获得积分10
10秒前
窗外是蔚蓝色完成签到,获得积分10
11秒前
nanostu完成签到,获得积分10
11秒前
Brief完成签到,获得积分10
11秒前
文心同学完成签到,获得积分10
11秒前
鹏举瞰冷雨完成签到,获得积分10
12秒前
儒雅的若翠完成签到,获得积分10
13秒前
caulif完成签到 ,获得积分10
15秒前
xiaoxiao完成签到 ,获得积分10
15秒前
肯德鸭完成签到,获得积分10
16秒前
橙味美年达完成签到,获得积分10
16秒前
h41692011完成签到 ,获得积分10
18秒前
十七完成签到 ,获得积分10
19秒前
清颜完成签到 ,获得积分10
19秒前
炼丹炉完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580488
求助须知:如何正确求助?哪些是违规求助? 3150008
关于积分的说明 9479682
捐赠科研通 2851531
什么是DOI,文献DOI怎么找? 1567864
邀请新用户注册赠送积分活动 734254
科研通“疑难数据库(出版商)”最低求助积分说明 720579