亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An intelligent multi-element fault diagnosis method of rolling bearings considering damage degrees and sensor abnormity under small samples

断层(地质) 灰度 人工智能 卷积神经网络 计算机科学 模式识别(心理学) 控制理论(社会学) 工程类 算法 图像(数学) 地质学 地震学 控制(管理)
作者
Hongwei Fan,Buran Chen,Xiangang Cao,Qingshan Li,Haowen Xu,Teng Zhang,Xuhui Zhang,Yi Ren
标识
DOI:10.1177/09544062241293355
摘要

Aiming at the intelligent fault diagnosis problem of rolling bearings, a novel diagnosis method considering damage degrees and sensor abnormity under small samples is proposed. A complex fault mode simulation scheme with a total of 18 states is designed for rolling bearings, including a single element fault, double elements fault, and all elements fault with damage degrees of slight and heavy and the loose threaded connection of the used sensor. The variational mode decomposition (VMD) is used to decompose the original vibration signals and reconstruct the denoised signals, the reconstructed signals are converted into the grayscale images, and then processed by local binary pattern (LBP) to enhance the image texture features. Under small samples, an improved deep convolutional generative adversarial network (DCGAN) through upsampling, activation function optimization, Dropout addition and model architecture adjustment is used to expand the grayscale texture image (GTI) samples. The improved DCGAN converges the fastest in all states, and the final MMD values are all below 0.5. For the different sample expansion ratios, the residual neural network (ResNet) as the fault diagnosis model is used to verify the effectiveness of DCGAN sample expansion method in improving the accuracy of fault diagnosis. The results show when the original number of samples is 100, the optimal expansion ratio is 1:1. And the fault diagnosis accuracy of ResNet with DCGAN sample expansion is increased by 6.81% from 85.97 to 92.78%, which proves that the proposed method can not only effectively distinguish the fault modes from a single element to all elements with different damage degrees of rolling bearings, but also identify the sensor abnormity with a high accuracy. This work provides an effective way for the intelligent diagnosis of complex fault modes of rolling bearings under small samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超人完成签到 ,获得积分10
14秒前
46秒前
康2000发布了新的文献求助30
51秒前
康2000完成签到,获得积分10
1分钟前
风中一叶完成签到 ,获得积分10
1分钟前
MIMI发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
紫罗兰花海完成签到 ,获得积分10
2分钟前
华仔应助你求我一下采纳,获得10
3分钟前
3分钟前
3分钟前
斯文败类应助ys采纳,获得10
3分钟前
4分钟前
ys发布了新的文献求助10
4分钟前
qrwyqjbsd应助ys采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
jjx1005完成签到 ,获得积分10
5分钟前
asdfqaz完成签到,获得积分10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
FMHChan完成签到,获得积分10
6分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
传奇3应助安详跳跳糖采纳,获得10
8分钟前
8分钟前
甚欢发布了新的文献求助10
8分钟前
小蘑菇应助咕咕采纳,获得10
8分钟前
甚欢完成签到,获得积分20
8分钟前
9分钟前
咕咕发布了新的文献求助10
9分钟前
lanxinge完成签到 ,获得积分10
9分钟前
9分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743751
什么是DOI,文献DOI怎么找? 1505214
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867