An intelligent multi-element fault diagnosis method of rolling bearings considering damage degrees and sensor abnormity under small samples

断层(地质) 灰度 人工智能 卷积神经网络 计算机科学 模式识别(心理学) 控制理论(社会学) 工程类 算法 图像(数学) 控制(管理) 地震学 地质学
作者
Hongwei Fan,Buran Chen,Xiangang Cao,Qingshan Li,Haowen Xu,Teng Zhang,Xuhui Zhang,Yi Ren
标识
DOI:10.1177/09544062241293355
摘要

Aiming at the intelligent fault diagnosis problem of rolling bearings, a novel diagnosis method considering damage degrees and sensor abnormity under small samples is proposed. A complex fault mode simulation scheme with a total of 18 states is designed for rolling bearings, including a single element fault, double elements fault, and all elements fault with damage degrees of slight and heavy and the loose threaded connection of the used sensor. The variational mode decomposition (VMD) is used to decompose the original vibration signals and reconstruct the denoised signals, the reconstructed signals are converted into the grayscale images, and then processed by local binary pattern (LBP) to enhance the image texture features. Under small samples, an improved deep convolutional generative adversarial network (DCGAN) through upsampling, activation function optimization, Dropout addition and model architecture adjustment is used to expand the grayscale texture image (GTI) samples. The improved DCGAN converges the fastest in all states, and the final MMD values are all below 0.5. For the different sample expansion ratios, the residual neural network (ResNet) as the fault diagnosis model is used to verify the effectiveness of DCGAN sample expansion method in improving the accuracy of fault diagnosis. The results show when the original number of samples is 100, the optimal expansion ratio is 1:1. And the fault diagnosis accuracy of ResNet with DCGAN sample expansion is increased by 6.81% from 85.97 to 92.78%, which proves that the proposed method can not only effectively distinguish the fault modes from a single element to all elements with different damage degrees of rolling bearings, but also identify the sensor abnormity with a high accuracy. This work provides an effective way for the intelligent diagnosis of complex fault modes of rolling bearings under small samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彬彬有李完成签到,获得积分10
1秒前
WXB完成签到,获得积分10
2秒前
3秒前
科研通AI2S应助唠叨的白曼采纳,获得10
4秒前
小古发布了新的文献求助10
6秒前
有人应助愤怒的绿蕊采纳,获得10
7秒前
古卡可可完成签到 ,获得积分10
7秒前
7秒前
7秒前
帅气凝海发布了新的文献求助30
8秒前
22完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
学术脑袋发布了新的文献求助10
11秒前
lifangqi完成签到,获得积分20
12秒前
13秒前
13秒前
hannah完成签到,获得积分10
14秒前
酸奶烤着吃完成签到,获得积分10
15秒前
Owen应助391X小king采纳,获得10
16秒前
16秒前
小古完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
梦幻发布了新的文献求助10
18秒前
楚博完成签到,获得积分10
18秒前
Am1r完成签到,获得积分10
18秒前
hannah发布了新的文献求助20
19秒前
赵康康发布了新的文献求助10
19秒前
蒸盐粥发布了新的文献求助10
22秒前
22秒前
24秒前
25秒前
实验顺利完成签到,获得积分10
26秒前
不期而遇发布了新的文献求助10
26秒前
26秒前
我是老大应助拼搏的无心采纳,获得10
27秒前
28秒前
28秒前
烟花应助hay采纳,获得10
28秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365