已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An intelligent multi-element fault diagnosis method of rolling bearings considering damage degrees and sensor abnormity under small samples

断层(地质) 灰度 人工智能 卷积神经网络 计算机科学 模式识别(心理学) 控制理论(社会学) 工程类 算法 图像(数学) 控制(管理) 地震学 地质学
作者
Hongwei Fan,Buran Chen,Xiangang Cao,Qingshan Li,Haowen Xu,Teng Zhang,Xuhui Zhang,Yi Ren
出处
标识
DOI:10.1177/09544062241293355
摘要

Aiming at the intelligent fault diagnosis problem of rolling bearings, a novel diagnosis method considering damage degrees and sensor abnormity under small samples is proposed. A complex fault mode simulation scheme with a total of 18 states is designed for rolling bearings, including a single element fault, double elements fault, and all elements fault with damage degrees of slight and heavy and the loose threaded connection of the used sensor. The variational mode decomposition (VMD) is used to decompose the original vibration signals and reconstruct the denoised signals, the reconstructed signals are converted into the grayscale images, and then processed by local binary pattern (LBP) to enhance the image texture features. Under small samples, an improved deep convolutional generative adversarial network (DCGAN) through upsampling, activation function optimization, Dropout addition and model architecture adjustment is used to expand the grayscale texture image (GTI) samples. The improved DCGAN converges the fastest in all states, and the final MMD values are all below 0.5. For the different sample expansion ratios, the residual neural network (ResNet) as the fault diagnosis model is used to verify the effectiveness of DCGAN sample expansion method in improving the accuracy of fault diagnosis. The results show when the original number of samples is 100, the optimal expansion ratio is 1:1. And the fault diagnosis accuracy of ResNet with DCGAN sample expansion is increased by 6.81% from 85.97 to 92.78%, which proves that the proposed method can not only effectively distinguish the fault modes from a single element to all elements with different damage degrees of rolling bearings, but also identify the sensor abnormity with a high accuracy. This work provides an effective way for the intelligent diagnosis of complex fault modes of rolling bearings under small samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyhyhyhy发布了新的文献求助20
2秒前
体贴苞络应助Alex采纳,获得10
3秒前
5秒前
6秒前
qqq完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
草莓小妹发布了新的文献求助10
11秒前
leoxiao发布了新的文献求助30
11秒前
罐罐完成签到,获得积分10
12秒前
slx发布了新的文献求助10
12秒前
fu发布了新的文献求助20
12秒前
青木香发布了新的文献求助10
13秒前
minion完成签到,获得积分10
14秒前
wszhang完成签到,获得积分10
14秒前
qqq发布了新的文献求助10
14秒前
hhh完成签到 ,获得积分10
14秒前
14秒前
悄悄.完成签到,获得积分10
15秒前
19秒前
解语花发布了新的文献求助10
20秒前
22秒前
852应助夜雨声烦采纳,获得10
22秒前
25秒前
微笑的铸海完成签到 ,获得积分10
28秒前
思源应助罐罐采纳,获得10
29秒前
32秒前
JamesPei应助斑鸠采纳,获得10
35秒前
Guoqiang发布了新的文献求助10
36秒前
38秒前
永不言弃的lx完成签到,获得积分10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994330
求助须知:如何正确求助?哪些是违规求助? 3534764
关于积分的说明 11266452
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749