An intelligent multi-element fault diagnosis method of rolling bearings considering damage degrees and sensor abnormity under small samples

断层(地质) 灰度 人工智能 卷积神经网络 计算机科学 模式识别(心理学) 控制理论(社会学) 工程类 算法 图像(数学) 地质学 地震学 控制(管理)
作者
Hongwei Fan,Buran Chen,Xiangang Cao,Qingshan Li,Haowen Xu,Teng Zhang,Xuhui Zhang,Yi Ren
出处
标识
DOI:10.1177/09544062241293355
摘要

Aiming at the intelligent fault diagnosis problem of rolling bearings, a novel diagnosis method considering damage degrees and sensor abnormity under small samples is proposed. A complex fault mode simulation scheme with a total of 18 states is designed for rolling bearings, including a single element fault, double elements fault, and all elements fault with damage degrees of slight and heavy and the loose threaded connection of the used sensor. The variational mode decomposition (VMD) is used to decompose the original vibration signals and reconstruct the denoised signals, the reconstructed signals are converted into the grayscale images, and then processed by local binary pattern (LBP) to enhance the image texture features. Under small samples, an improved deep convolutional generative adversarial network (DCGAN) through upsampling, activation function optimization, Dropout addition and model architecture adjustment is used to expand the grayscale texture image (GTI) samples. The improved DCGAN converges the fastest in all states, and the final MMD values are all below 0.5. For the different sample expansion ratios, the residual neural network (ResNet) as the fault diagnosis model is used to verify the effectiveness of DCGAN sample expansion method in improving the accuracy of fault diagnosis. The results show when the original number of samples is 100, the optimal expansion ratio is 1:1. And the fault diagnosis accuracy of ResNet with DCGAN sample expansion is increased by 6.81% from 85.97 to 92.78%, which proves that the proposed method can not only effectively distinguish the fault modes from a single element to all elements with different damage degrees of rolling bearings, but also identify the sensor abnormity with a high accuracy. This work provides an effective way for the intelligent diagnosis of complex fault modes of rolling bearings under small samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助clean采纳,获得10
刚刚
8R60d8应助步步采纳,获得10
刚刚
Azed发布了新的文献求助10
1秒前
云蓝完成签到 ,获得积分10
1秒前
铁甲小宝发布了新的文献求助10
2秒前
蹇蹇完成签到 ,获得积分10
3秒前
5秒前
乐乐应助晨阳采纳,获得10
5秒前
8秒前
9秒前
9秒前
xixi完成签到 ,获得积分10
9秒前
10秒前
10秒前
怡然的背包完成签到,获得积分10
10秒前
松果发布了新的文献求助10
11秒前
11秒前
pxy发布了新的文献求助10
12秒前
眼睛大的从雪完成签到,获得积分10
12秒前
12秒前
13秒前
心流中的麋鹿完成签到,获得积分10
13秒前
打打应助问奈何采纳,获得10
15秒前
15秒前
李爱国应助张欢欢采纳,获得10
16秒前
李健应助廖英健采纳,获得10
16秒前
纸速度发布了新的文献求助10
17秒前
独特听芹发布了新的文献求助10
17秒前
赵凌完成签到,获得积分10
18秒前
winfan完成签到 ,获得积分10
18秒前
漫漫发布了新的文献求助10
19秒前
谨慎青亦发布了新的文献求助10
19秒前
yanchen完成签到,获得积分10
21秒前
22秒前
甜雨雨雨呀完成签到,获得积分10
23秒前
XYxiangqian完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
式微给式微的求助进行了留言
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263241
求助须知:如何正确求助?哪些是违规求助? 4423888
关于积分的说明 13771111
捐赠科研通 4298829
什么是DOI,文献DOI怎么找? 2358729
邀请新用户注册赠送积分活动 1354999
关于科研通互助平台的介绍 1316209