An intelligent multi-element fault diagnosis method of rolling bearings considering damage degrees and sensor abnormity under small samples

断层(地质) 灰度 人工智能 卷积神经网络 计算机科学 模式识别(心理学) 控制理论(社会学) 工程类 算法 图像(数学) 控制(管理) 地震学 地质学
作者
Hongwei Fan,Buran Chen,Xiangang Cao,Qingshan Li,Haowen Xu,Teng Zhang,Xuhui Zhang,Yi Ren
标识
DOI:10.1177/09544062241293355
摘要

Aiming at the intelligent fault diagnosis problem of rolling bearings, a novel diagnosis method considering damage degrees and sensor abnormity under small samples is proposed. A complex fault mode simulation scheme with a total of 18 states is designed for rolling bearings, including a single element fault, double elements fault, and all elements fault with damage degrees of slight and heavy and the loose threaded connection of the used sensor. The variational mode decomposition (VMD) is used to decompose the original vibration signals and reconstruct the denoised signals, the reconstructed signals are converted into the grayscale images, and then processed by local binary pattern (LBP) to enhance the image texture features. Under small samples, an improved deep convolutional generative adversarial network (DCGAN) through upsampling, activation function optimization, Dropout addition and model architecture adjustment is used to expand the grayscale texture image (GTI) samples. The improved DCGAN converges the fastest in all states, and the final MMD values are all below 0.5. For the different sample expansion ratios, the residual neural network (ResNet) as the fault diagnosis model is used to verify the effectiveness of DCGAN sample expansion method in improving the accuracy of fault diagnosis. The results show when the original number of samples is 100, the optimal expansion ratio is 1:1. And the fault diagnosis accuracy of ResNet with DCGAN sample expansion is increased by 6.81% from 85.97 to 92.78%, which proves that the proposed method can not only effectively distinguish the fault modes from a single element to all elements with different damage degrees of rolling bearings, but also identify the sensor abnormity with a high accuracy. This work provides an effective way for the intelligent diagnosis of complex fault modes of rolling bearings under small samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
陈陈发布了新的文献求助10
刚刚
刚刚
wanci应助一只盒子采纳,获得10
刚刚
量子星尘发布了新的文献求助10
2秒前
4秒前
wroy完成签到,获得积分10
4秒前
我只想躺平完成签到,获得积分10
5秒前
chenqiumu应助热心的早晨采纳,获得30
5秒前
6秒前
陈陈完成签到,获得积分10
6秒前
昏睡的绮玉完成签到,获得积分10
7秒前
Luna_aaa应助wroy采纳,获得10
7秒前
小石榴的爸爸完成签到 ,获得积分10
9秒前
9秒前
9秒前
笙笙发布了新的文献求助10
10秒前
10秒前
浮游应助nonochi666采纳,获得10
11秒前
酸奶巧克力完成签到,获得积分10
12秒前
YY完成签到,获得积分10
12秒前
13秒前
zxcvbnm完成签到 ,获得积分10
13秒前
浮游应助昏睡的绮玉采纳,获得10
13秒前
大方大船完成签到,获得积分10
13秒前
Hyper1900发布了新的文献求助10
14秒前
YY发布了新的文献求助10
15秒前
Ffffff发布了新的文献求助10
16秒前
叁叁发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
orixero应助洁净的谷梦采纳,获得10
18秒前
Ava应助魔幻的自中采纳,获得10
19秒前
ye发布了新的文献求助10
19秒前
飞快的冰之完成签到,获得积分10
20秒前
21秒前
Aurora完成签到 ,获得积分10
21秒前
一只盒子发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495289
求助须知:如何正确求助?哪些是违规求助? 4592991
关于积分的说明 14439393
捐赠科研通 4525839
什么是DOI,文献DOI怎么找? 2479723
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385