Enhancing Coronary Revascularization Decisions: The Promising Role of Large Language Models as a Decision-Support Tool for Multidisciplinary Heart Team

医学 一致性 血运重建 冠状动脉疾病 背景(考古学) 经皮冠状动脉介入治疗 内科学 医疗保健 组内相关 传统PCI 心脏病学 心肌梗塞 急诊医学 古生物学 经济 心理测量学 生物 临床心理学 经济增长
作者
Karin Sudri,Iris Motro-Feingold,Roni Ramon‐Gonen,Noam Barda,Eyal Klang,Paul Fefer,Sergei Amunts,Zachi I. Attia,Mohamad Alkhouli,Amitai Segev,Michal Cohen-Shelly,Israel M. Barbash
出处
期刊:Circulation-cardiovascular Interventions [Ovid Technologies (Wolters Kluwer)]
卷期号:17 (11) 被引量:1
标识
DOI:10.1161/circinterventions.124.014201
摘要

BACKGROUND: While clinical practice guidelines advocate for multidisciplinary heart team (MDHT) discussions in coronary revascularization, variability in implementation across health care settings remains a challenge. This variability could potentially be addressed by language learning models like ChatGPT, offering decision-making support in diverse health care environments. Our study aims to critically evaluate the concordance between recommendations made by MDHT and those generated by language learning models in coronary revascularization decision-making. METHODS: From March 2023 to July 2023, consecutive coronary angiography cases (n=86) that were referred for revascularization (either percutaneous or surgical) were analyzed using both ChatGPT-3.5 and ChatGPT-4. Case presentation formats included demographics, medical background, detailed description of angiographic findings, and SYNTAX score (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery; I and II), which were presented in 3 different formats. The recommendations of the models were compared with those of an MDHT. RESULTS: ChatGPT-4 showed high concordance with decisions made by the MDHT (accuracy 0.82, sensitivity 0.8, specificity 0.83, and kappa 0.59), while ChatGPT-3.5 (0.67, 0.27, 0.84, and 0.12, respectively) showed lower concordance. Entropy and Fleiss kappa of ChatGPT-4 were 0.09 and 0.9, respectively, indicating high reliability and repeatability. The best correlation between ChatGPT-4 and MDHT was achieved when clinical cases were presented in a detailed context. Specific subgroups of patients yielded high accuracy (>0.9) of ChatGPT-4, including those with left main disease, 3 vessel disease, and diabetic patients. CONCLUSIONS: The present study demonstrates that advanced language learning models like ChatGPT-4 may be able to predict clinical recommendations for coronary artery disease revascularization with reasonable accuracy, especially in specific patient groups, underscoring their potential role as a supportive tool in clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张完成签到,获得积分10
1秒前
2秒前
2秒前
小布丁发布了新的文献求助10
2秒前
GinaLundhild06应助陌然浅笑采纳,获得10
2秒前
在水一方应助luxiuzhen采纳,获得10
2秒前
3秒前
4秒前
呜呜呜呜发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
ken发布了新的文献求助10
5秒前
大模型应助李李李采纳,获得10
6秒前
sn完成签到,获得积分10
6秒前
yy应助张张采纳,获得20
7秒前
超大鹅发布了新的文献求助10
7秒前
深情安青应助寒冬采纳,获得10
9秒前
飞123发布了新的文献求助10
9秒前
夏冰发布了新的文献求助10
9秒前
柠檬柠檬发布了新的文献求助10
9秒前
脑洞疼应助Feathamity采纳,获得10
9秒前
闪闪无敌发布了新的文献求助10
9秒前
晚灯君完成签到 ,获得积分0
10秒前
赘婿应助卧镁铀钳采纳,获得10
10秒前
素素发布了新的文献求助10
12秒前
12秒前
上官若男应助心秦采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
所所应助晴云采纳,获得10
14秒前
呜呜呜呜完成签到,获得积分20
14秒前
在水一方应助wenwliu采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
vchen0621发布了新的文献求助10
16秒前
海浪完成签到 ,获得积分10
17秒前
17秒前
Nemo完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675761
求助须知:如何正确求助?哪些是违规求助? 4948864
关于积分的说明 15154614
捐赠科研通 4835061
什么是DOI,文献DOI怎么找? 2589850
邀请新用户注册赠送积分活动 1543573
关于科研通互助平台的介绍 1501325