Risk score stratification of cutaneous melanoma patients based on whole slide images analysis by deep learning

医学 队列 一致性 危险分层 黑色素瘤 内科学 肿瘤科 列线图 人工智能 多元分析 癌症研究 计算机科学
作者
Céline Bossard,Yahia Salhi,Amir Khammari,Maud Brousseau,Y. Le Corre,Sanae Salhi,G. Quéreux,Jérôme Chetritt
出处
标识
DOI:10.1111/jdv.20538
摘要

Abstract Background There is a need to improve risk stratification of primary cutaneous melanomas to better guide adjuvant therapy. Taking into account that haematoxylin and eosin (HE)‐stained tumour tissue contains a huge amount of clinically unexploited morphological informations, we developed a weakly‐supervised deep‐learning approach, SmartProg‐MEL, to predict survival outcomes in stages I to III melanoma patients from HE‐stained whole slide image (WSI). Methods We designed a deep neural network that extracts morphological features from WSI to predict 5‐y overall survival (OS), and assign a survival risk score to each patient. The model was trained and validated on a discovery cohort of primary cutaneous melanomas (IHP‐MEL‐1, n = 342). Performance was tested on two external and independent datasets (IHP‐MEL‐2, n = 161; and TCGA cohort n = 63). It was compared with well‐established prognostic factors. Concordance index (c‐index) was used as a metric. Results On the discovery cohort, the SmartProg‐MEL predicts the 5‐y OS with a c‐index of 0.78 on the cross‐validation data and of 0.72 on the cross‐testing series. In the external cohorts, the model achieved a c‐index of 0.71 and 0.69 for the IHP‐MEL‐2 and TCGA dataset respectively. Furthermore, SmartProg‐MEL was an independent and the most powerful prognostic factor in multivariate analysis (HR = 1.84, p ‐value < 0.005). Finally, the model was able to dichotomize patients in two groups—a low and a high‐risk group—each associated with a significantly different 5‐y OS ( p ‐value < 0.001 for IHP‐MEL‐1 and p ‐value = 0.01 for IHP‐MEL‐2). Conclusion The performance of our fully automated SmartProg‐MEL model outperforms the current clinicopathological factors in terms of prediction of 5‐y OS and risk stratification of cutaneous melanoma patients. Incorporation of SmartProg‐MEL in the clinical workflow could guide the decision‐making process by improving the identification of patients that may benefit from adjuvant therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开拖拉机的芍药完成签到 ,获得积分10
3秒前
wanci应助路鸣泽采纳,获得10
6秒前
CipherSage应助cicy采纳,获得10
6秒前
Jasper应助更加好采纳,获得10
7秒前
didi完成签到 ,获得积分10
8秒前
8秒前
9秒前
10秒前
TT2022发布了新的文献求助10
10秒前
11秒前
古风完成签到,获得积分10
11秒前
英姑应助李珂采纳,获得10
12秒前
12秒前
14秒前
迷路曼彤完成签到 ,获得积分10
15秒前
15秒前
22222发布了新的文献求助10
18秒前
18秒前
19秒前
hhhhhhhhhh完成签到 ,获得积分10
20秒前
学渣路过完成签到,获得积分0
21秒前
思源应助白白采纳,获得10
21秒前
22秒前
楚襄谷发布了新的文献求助10
22秒前
路鸣泽发布了新的文献求助10
22秒前
更加好发布了新的文献求助10
23秒前
开心依白关注了科研通微信公众号
24秒前
25秒前
顾矜应助柯北采纳,获得10
26秒前
26秒前
999发布了新的文献求助10
28秒前
Capybara发布了新的文献求助10
29秒前
所所应助blue采纳,获得10
30秒前
Tuniverse_完成签到 ,获得积分10
31秒前
慕青应助路鸣泽采纳,获得10
32秒前
大模型应助Capybara采纳,获得10
36秒前
爱笑的元正完成签到,获得积分10
40秒前
40秒前
爱静静应助明眸意海采纳,获得10
41秒前
隐形曼青应助Destiny采纳,获得30
43秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376688
求助须知:如何正确求助?哪些是违规求助? 2992619
关于积分的说明 8751982
捐赠科研通 2676972
什么是DOI,文献DOI怎么找? 1466377
科研通“疑难数据库(出版商)”最低求助积分说明 678292
邀请新用户注册赠送积分活动 669907