已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Risk score stratification of cutaneous melanoma patients based on whole slide images analysis by deep learning

医学 队列 一致性 危险分层 黑色素瘤 内科学 肿瘤科 列线图 人工智能 多元分析 癌症研究 计算机科学
作者
Céline Bossard,Yahia Salhi,Amir Khammari,Maud Brousseau,Y. Le Corre,Sanae Salhi,G. Quéreux,Jérôme Chetritt
出处
期刊:Journal of The European Academy of Dermatology and Venereology [Wiley]
被引量:1
标识
DOI:10.1111/jdv.20538
摘要

Abstract Background There is a need to improve risk stratification of primary cutaneous melanomas to better guide adjuvant therapy. Taking into account that haematoxylin and eosin (HE)‐stained tumour tissue contains a huge amount of clinically unexploited morphological informations, we developed a weakly‐supervised deep‐learning approach, SmartProg‐MEL, to predict survival outcomes in stages I to III melanoma patients from HE‐stained whole slide image (WSI). Methods We designed a deep neural network that extracts morphological features from WSI to predict 5‐y overall survival (OS), and assign a survival risk score to each patient. The model was trained and validated on a discovery cohort of primary cutaneous melanomas (IHP‐MEL‐1, n = 342). Performance was tested on two external and independent datasets (IHP‐MEL‐2, n = 161; and TCGA cohort n = 63). It was compared with well‐established prognostic factors. Concordance index (c‐index) was used as a metric. Results On the discovery cohort, the SmartProg‐MEL predicts the 5‐y OS with a c‐index of 0.78 on the cross‐validation data and of 0.72 on the cross‐testing series. In the external cohorts, the model achieved a c‐index of 0.71 and 0.69 for the IHP‐MEL‐2 and TCGA dataset respectively. Furthermore, SmartProg‐MEL was an independent and the most powerful prognostic factor in multivariate analysis (HR = 1.84, p ‐value < 0.005). Finally, the model was able to dichotomize patients in two groups—a low and a high‐risk group—each associated with a significantly different 5‐y OS ( p ‐value < 0.001 for IHP‐MEL‐1 and p ‐value = 0.01 for IHP‐MEL‐2). Conclusion The performance of our fully automated SmartProg‐MEL model outperforms the current clinicopathological factors in terms of prediction of 5‐y OS and risk stratification of cutaneous melanoma patients. Incorporation of SmartProg‐MEL in the clinical workflow could guide the decision‐making process by improving the identification of patients that may benefit from adjuvant therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向阳发布了新的文献求助10
1秒前
Akim应助柚子采纳,获得10
2秒前
大模型应助PAPA采纳,获得10
3秒前
4秒前
Hello应助科研通管家采纳,获得10
5秒前
Hilda007应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
YifanWang应助科研通管家采纳,获得10
5秒前
Hilda007应助科研通管家采纳,获得10
5秒前
CCCheny应助科研通管家采纳,获得10
5秒前
YifanWang应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
6秒前
CCCheny应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得100
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得100
6秒前
Hello应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
SciGPT应助科研通管家采纳,获得30
6秒前
SciGPT应助科研通管家采纳,获得30
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
jike发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938