Enhancing risk stratification models in localized prostate cancer by novel validated tissue biomarkers

前列腺癌 医学 肿瘤科 队列 内科学 前列腺切除术 前列腺 免疫组织化学 比例危险模型 生化复发 癌症 病理
作者
Csilla Oláh,Fabian Mairinger,Michael Wessolly,Steven Joniau,Martin Spahn,Marianna Kruithof-de Julio,Boris Hadaschik,Áron Soós,Péter Nyírády,Balázs Győrffy,Henning Reis,Tibor Szarvas
出处
期刊:Prostate Cancer and Prostatic Diseases [Springer Nature]
标识
DOI:10.1038/s41391-024-00918-9
摘要

Abstract Background Localized prostate cancer (PCa) is a largely heterogeneous disease regarding its clinical behavior. Current risk stratification relies on clinicopathological parameters and distinguishing between indolent and aggressive cases remains challenging. To improve risk stratification, we aimed to identify new prognostic markers for PCa. Methods We performed an in silico analysis on publicly available PCa transcriptome datasets. The top 20 prognostic genes were assessed in PCa tissue samples of our institutional cohort ( n = 92) using the NanoString nCounter technology. The three most promising candidates were further assessed by immunohistochemistry (IHC) in an institutional ( n = 121) and an independent validation cohort from the EMPACT consortium ( n = 199). Cancer-specific survival (CSS) and progression-free survival (PFS) were used as endpoints. Results Our in silico analysis identified 113 prognostic genes. The prognostic values of seven of the top 20 genes were confirmed in our institutional radical prostatectomy (RPE) cohort. Low CENPO, P2RX5 , ABCC5 as well as high ASF1B, NCAPH, UBE2C , and ZWINT gene expressions were associated with shorter CSS. IHC analysis confirmed the significant associations between NCAPH and UBE2C staining and worse CSS. In the external validation cohort, higher NCAPH and ZWINT protein expressions were associated with shorter PFS. The combination of the newly identified tissue protein markers improved standard risk stratification models, such as D’Amico, CAPRA, and Cambridge prognostic groups. Conclusions We identified and validated high tissue levels of NCAPH, UBE2C, and ZWINT as novel prognostic risk factors in clinically localized PCa patients. The use of these markers can improve routinely used risk estimation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助奔奔采纳,获得10
1秒前
星辰大海应助八八采纳,获得20
1秒前
gaga发布了新的文献求助10
1秒前
木子加y发布了新的文献求助10
1秒前
大大泡泡完成签到,获得积分10
2秒前
852应助zhui采纳,获得10
3秒前
芒果发布了新的文献求助10
3秒前
4秒前
前百年253完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
xiaoguai完成签到 ,获得积分10
6秒前
甜蜜晓绿发布了新的文献求助10
8秒前
8秒前
Bruce发布了新的文献求助10
8秒前
9秒前
9秒前
MYhang完成签到,获得积分10
9秒前
wxd发布了新的文献求助10
11秒前
11秒前
哈哈发布了新的文献求助10
12秒前
12秒前
西哈哈发布了新的文献求助10
12秒前
科研通AI5应助lili采纳,获得10
12秒前
郑嘻嘻完成签到,获得积分10
12秒前
12秒前
FEI完成签到,获得积分20
12秒前
14秒前
英姑应助顺利的乐枫采纳,获得10
14秒前
14秒前
14秒前
15秒前
木子加y完成签到 ,获得积分10
16秒前
小蘑菇应助Sally采纳,获得10
16秒前
命运的X号完成签到,获得积分10
16秒前
yangyong发布了新的文献求助10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794