Generative AI models in time varying biomedical data: a systematic review (Preprint)

预印本 计算机科学 数据科学 人工智能 万维网
作者
Rosemary He,Varuni Sarwal,Xinru Qiu,Yongwen Zhuang,Le Zhang,Yue Liu,Jeffrey N. Chiang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
标识
DOI:10.2196/59792
摘要

Trajectory modeling is a long-standing challenge in the application of computational methods to health care. In the age of big data, traditional statistical and machine learning methods do not achieve satisfactory results as they often fail to capture the complex underlying distributions of multimodal health data and long-term dependencies throughout medical histories. Recent advances in generative artificial intelligence (AI) have provided powerful tools to represent complex distributions and patterns with minimal underlying assumptions, with major impact in fields such as finance and environmental sciences, prompting researchers to apply these methods for disease modeling in health care. While AI methods have proven powerful, their application in clinical practice remains limited due to their highly complex nature. The proliferation of AI algorithms also poses a significant challenge for nondevelopers to track and incorporate these advances into clinical research and application. In this paper, we introduce basic concepts in generative AI and discuss current algorithms and how they can be applied to health care for practitioners with little background in computer science. We surveyed peer-reviewed papers on generative AI models with specific applications to time-series health data. Our search included single- and multimodal generative AI models that operated over structured and unstructured data, physiological waveforms, medical imaging, and multi-omics data. We introduce current generative AI methods, review their applications, and discuss their limitations and future directions in each data modality. We followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines and reviewed 155 articles on generative AI applications to time-series health care data across modalities. Furthermore, we offer a systematic framework for clinicians to easily identify suitable AI methods for their data and task at hand. We reviewed and critiqued existing applications of generative AI to time-series health data with the aim of bridging the gap between computational methods and clinical application. We also identified the shortcomings of existing approaches and highlighted recent advances in generative AI that represent promising directions for health care modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Oxygen完成签到,获得积分10
2秒前
hhhblabla应助积极的初南采纳,获得20
3秒前
watermelon完成签到,获得积分10
4秒前
桐桐应助暴躁小龙采纳,获得10
10秒前
14秒前
15秒前
蓬松小面包完成签到 ,获得积分20
16秒前
bkagyin应助大白采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
收集快乐发布了新的文献求助10
18秒前
bsf123完成签到,获得积分10
18秒前
19秒前
DeepLearning发布了新的文献求助10
21秒前
21秒前
科研通AI2S应助细辛采纳,获得10
21秒前
22秒前
22秒前
俭朴依白完成签到,获得积分10
22秒前
ElbingX完成签到,获得积分10
24秒前
暴躁小龙发布了新的文献求助10
25秒前
文档发布了新的文献求助10
26秒前
26秒前
严溯发布了新的文献求助10
27秒前
27秒前
29秒前
momo发布了新的文献求助10
29秒前
不可思宇完成签到,获得积分10
30秒前
30秒前
浩浩发布了新的文献求助10
31秒前
Philip发布了新的文献求助10
32秒前
33秒前
赘婿应助SherlockHe采纳,获得10
33秒前
橘子的角动量完成签到,获得积分10
34秒前
严溯完成签到,获得积分10
35秒前
36秒前
胡航航发布了新的文献求助20
36秒前
雨的痕迹发布了新的文献求助10
37秒前
AnnieSsy完成签到,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158