Generative AI models in time varying biomedical data: a systematic review (Preprint)

预印本 计算机科学 数据科学 人工智能 万维网
作者
Rosemary He,Varuni Sarwal,Xinru Qiu,Yongwen Zhuang,Le Zhang,Yue Liu,Jeffrey N. Chiang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
标识
DOI:10.2196/59792
摘要

Trajectory modeling is a long-standing challenge in the application of computational methods to health care. In the age of big data, traditional statistical and machine learning methods do not achieve satisfactory results as they often fail to capture the complex underlying distributions of multimodal health data and long-term dependencies throughout medical histories. Recent advances in generative artificial intelligence (AI) have provided powerful tools to represent complex distributions and patterns with minimal underlying assumptions, with major impact in fields such as finance and environmental sciences, prompting researchers to apply these methods for disease modeling in health care. While AI methods have proven powerful, their application in clinical practice remains limited due to their highly complex nature. The proliferation of AI algorithms also poses a significant challenge for nondevelopers to track and incorporate these advances into clinical research and application. In this paper, we introduce basic concepts in generative AI and discuss current algorithms and how they can be applied to health care for practitioners with little background in computer science. We surveyed peer-reviewed papers on generative AI models with specific applications to time-series health data. Our search included single- and multimodal generative AI models that operated over structured and unstructured data, physiological waveforms, medical imaging, and multi-omics data. We introduce current generative AI methods, review their applications, and discuss their limitations and future directions in each data modality. We followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines and reviewed 155 articles on generative AI applications to time-series health care data across modalities. Furthermore, we offer a systematic framework for clinicians to easily identify suitable AI methods for their data and task at hand. We reviewed and critiqued existing applications of generative AI to time-series health data with the aim of bridging the gap between computational methods and clinical application. We also identified the shortcomings of existing approaches and highlighted recent advances in generative AI that represent promising directions for health care modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助不安的秋白采纳,获得10
1秒前
忧伤的步美完成签到,获得积分10
6秒前
小西完成签到 ,获得积分10
7秒前
郝老头完成签到,获得积分10
8秒前
13313完成签到,获得积分10
9秒前
su完成签到 ,获得积分10
10秒前
13秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
slayers完成签到 ,获得积分10
18秒前
20秒前
知犯何逆完成签到,获得积分10
22秒前
Krsky完成签到,获得积分10
24秒前
ding应助不安的秋白采纳,获得10
25秒前
26秒前
28秒前
HHHAN发布了新的文献求助10
32秒前
威武的沂完成签到,获得积分10
37秒前
39秒前
40秒前
42秒前
笨笨青筠完成签到 ,获得积分10
45秒前
mengmenglv完成签到 ,获得积分0
45秒前
Tonald Yang完成签到 ,获得积分20
48秒前
49秒前
落后的怀梦完成签到 ,获得积分10
50秒前
陈坤完成签到,获得积分10
52秒前
量子星尘发布了新的文献求助10
54秒前
斯文败类应助zgx采纳,获得10
55秒前
默默完成签到 ,获得积分10
55秒前
KY Mr.WANG完成签到,获得积分10
55秒前
1分钟前
guoxingliu完成签到,获得积分10
1分钟前
1分钟前
阳佟水蓉完成签到,获得积分10
1分钟前
gdgd完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
叮叮当当完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022