清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generative AI models in time varying biomedical data: a systematic review (Preprint)

预印本 计算机科学 数据科学 人工智能 万维网
作者
Rosemary He,Varuni Sarwal,Xinru Qiu,Yongwen Zhuang,Le Zhang,Yue Liu,Jeffrey N. Chiang
出处
期刊:Journal of Medical Internet Research
标识
DOI:10.2196/59792
摘要

Trajectory modeling is a long-standing challenge in the application of computational methods to health care. In the age of big data, traditional statistical and machine learning methods do not achieve satisfactory results as they often fail to capture the complex underlying distributions of multimodal health data and long-term dependencies throughout medical histories. Recent advances in generative artificial intelligence (AI) have provided powerful tools to represent complex distributions and patterns with minimal underlying assumptions, with major impact in fields such as finance and environmental sciences, prompting researchers to apply these methods for disease modeling in health care. While AI methods have proven powerful, their application in clinical practice remains limited due to their highly complex nature. The proliferation of AI algorithms also poses a significant challenge for nondevelopers to track and incorporate these advances into clinical research and application. In this paper, we introduce basic concepts in generative AI and discuss current algorithms and how they can be applied to health care for practitioners with little background in computer science. We surveyed peer-reviewed papers on generative AI models with specific applications to time-series health data. Our search included single- and multimodal generative AI models that operated over structured and unstructured data, physiological waveforms, medical imaging, and multi-omics data. We introduce current generative AI methods, review their applications, and discuss their limitations and future directions in each data modality. We followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines and reviewed 155 articles on generative AI applications to time-series health care data across modalities. Furthermore, we offer a systematic framework for clinicians to easily identify suitable AI methods for their data and task at hand. We reviewed and critiqued existing applications of generative AI to time-series health data with the aim of bridging the gap between computational methods and clinical application. We also identified the shortcomings of existing approaches and highlighted recent advances in generative AI that represent promising directions for health care modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁雪蓓完成签到 ,获得积分10
14秒前
墨言无殇完成签到 ,获得积分10
19秒前
风秋杨完成签到 ,获得积分10
29秒前
加贝完成签到 ,获得积分10
33秒前
烟花应助酷炫的背包采纳,获得10
34秒前
37秒前
42秒前
兔葵燕麦完成签到 ,获得积分10
52秒前
52秒前
1分钟前
1分钟前
酷炫的背包完成签到,获得积分10
1分钟前
雪妮完成签到 ,获得积分10
1分钟前
科研佟完成签到 ,获得积分10
2分钟前
oaoalaa完成签到 ,获得积分10
2分钟前
红毛兔完成签到 ,获得积分10
2分钟前
小学生学免疫完成签到 ,获得积分10
2分钟前
无奈的萍完成签到,获得积分10
2分钟前
时间煮雨我煮鱼完成签到,获得积分10
2分钟前
vbnn完成签到 ,获得积分10
2分钟前
Orange应助葡萄成熟时采纳,获得10
2分钟前
Jimmy_King完成签到 ,获得积分10
2分钟前
zhdjj完成签到 ,获得积分10
3分钟前
牧长一完成签到 ,获得积分0
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
阳佟人达发布了新的文献求助10
4分钟前
科研通AI5应助阳佟人达采纳,获得30
4分钟前
Antonio完成签到 ,获得积分10
4分钟前
千里草完成签到,获得积分10
4分钟前
future完成签到 ,获得积分10
5分钟前
楚襄谷完成签到 ,获得积分10
5分钟前
huanghe完成签到,获得积分10
5分钟前
吴晓娟完成签到 ,获得积分10
5分钟前
科研狗完成签到 ,获得积分10
5分钟前
Tuniverse_完成签到 ,获得积分10
5分钟前
拓跋雨梅完成签到 ,获得积分0
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
藜藜藜在乎你完成签到 ,获得积分10
5分钟前
啦啦啦完成签到 ,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
A Modified Hierarchical Risk Parity Framework for Portfolio Management 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3575128
求助须知:如何正确求助?哪些是违规求助? 3145110
关于积分的说明 9458116
捐赠科研通 2846383
什么是DOI,文献DOI怎么找? 1564829
邀请新用户注册赠送积分活动 732619
科研通“疑难数据库(出版商)”最低求助积分说明 719188