Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer

医学 前列腺癌 对比度(视觉) 前列腺 放射科 多参数磁共振成像 磁共振成像 癌症 医学物理学 人工智能 内科学 计算机科学
作者
Hongyan Huang,Junyang Mo,Zhiguang Ding,Xuehua Peng,R Liu,Danping Zhuang,Yu‐Zhong Zhang,Genwen Hu,B. Y. Huang,Yingwei Qiu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:314 (1)
标识
DOI:10.1148/radiol.240238
摘要

Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1. Materials and Methods Male patients with suspected prostate cancer who underwent multiparametric MRI were retrospectively included from three centers from April 2020 to April 2023. A deep learning model (pix2pix algorithm) was trained to synthesize contrast-enhanced MRI scans from four noncontrast MRI sequences (T1-weighted imaging, T2-weighted imaging, diffusion-weighted imaging, and apparent diffusion coefficient maps) and then tested on an internal and two external datasets. The reference standard for model training was the second postcontrast phase of the dynamic contrast-enhanced sequence. Similarity between simulated and acquired contrast-enhanced images was evaluated using the multiscale structural similarity index. Three radiologists independently scored T2-weighted and diffusion-weighted MRI with either simulated or acquired contrast-enhanced images using PI-RADS, version 2.1; agreement was assessed with Cohen κ. Results A total of 567 male patients (mean age, 66 years ± 11 [SD]) were divided into a training test set (n = 244), internal test set (n = 104), external test set 1 (n = 143), and external test set 2 (n = 76). Simulated and acquired contrast-enhanced images demonstrated high similarity (multiscale structural similarity index: 0.82, 0.71, and 0.69 for internal test set, external test set 1, and external test set 2, respectively) with excellent reader agreement of PI-RADS scores (Cohen κ, 0.96; 95% CI: 0.94, 0.98). When simulated contrast-enhanced imaging was added to biparametric MRI, 34 of 323 (10.5%) patients were upgraded to PI-RADS 4 from PI-RADS 3. Conclusion It was feasible to generate simulated contrast-enhanced prostate MRI using deep learning. The simulated and acquired contrast-enhanced MRI scans exhibited high similarity and demonstrated excellent agreement in assessing clinically significant prostate cancer based on PI-RADS, version 2.1. © RSNA, 2025 Supplemental material is available for this article. See also the editorial by Neji and Goh in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助zmy采纳,获得10
刚刚
善学以致用应助enoot采纳,获得10
1秒前
JamesPei应助失眠的血茗采纳,获得10
1秒前
青山发布了新的文献求助10
1秒前
亻鱼发布了新的文献求助10
2秒前
脑洞疼应助成就的小熊猫采纳,获得10
2秒前
2秒前
waterclouds完成签到 ,获得积分10
2秒前
圆圈儿完成签到,获得积分10
2秒前
司空剑封完成签到,获得积分10
3秒前
3秒前
海棠yiyi完成签到,获得积分10
3秒前
3秒前
梁小鑫发布了新的文献求助10
3秒前
Jenny应助圈圈采纳,获得10
4秒前
内向青文完成签到,获得积分10
4秒前
lefora完成签到,获得积分10
4秒前
丰知然应助CO2采纳,获得10
5秒前
Zhihu完成签到,获得积分10
5秒前
feng完成签到,获得积分10
6秒前
6秒前
美丽稀完成签到,获得积分10
7秒前
PXY应助屁王采纳,获得10
7秒前
sunburst完成签到,获得积分10
7秒前
狼主完成签到 ,获得积分10
7秒前
吕亦寒完成签到,获得积分10
7秒前
junzilan发布了新的文献求助10
8秒前
ZL发布了新的文献求助10
8秒前
8秒前
亻鱼完成签到,获得积分10
8秒前
超级蘑菇完成签到 ,获得积分10
9秒前
9秒前
9秒前
congguitar完成签到,获得积分10
9秒前
10秒前
limof完成签到,获得积分20
10秒前
跳跃聪健发布了新的文献求助10
10秒前
168521kf完成签到,获得积分10
10秒前
11秒前
Avatar完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740