Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer

医学 前列腺癌 对比度(视觉) 前列腺 放射科 多参数磁共振成像 磁共振成像 癌症 医学物理学 人工智能 内科学 计算机科学
作者
Hongyan Huang,Junyang Mo,Zhiguang Ding,Xuehua Peng,Ruihao Liu,Danping Zhuang,Yu‐Zhong Zhang,Genwen Hu,B. Y. Huang,Yingwei Qiu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:314 (1)
标识
DOI:10.1148/radiol.240238
摘要

Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1. Materials and Methods Male patients with suspected prostate cancer who underwent multiparametric MRI were retrospectively included from three centers from April 2020 to April 2023. A deep learning model (pix2pix algorithm) was trained to synthesize contrast-enhanced MRI scans from four noncontrast MRI sequences (T1-weighted imaging, T2-weighted imaging, diffusion-weighted imaging, and apparent diffusion coefficient maps) and then tested on an internal and two external datasets. The reference standard for model training was the second postcontrast phase of the dynamic contrast-enhanced sequence. Similarity between simulated and acquired contrast-enhanced images was evaluated using the multiscale structural similarity index. Three radiologists independently scored T2-weighted and diffusion-weighted MRI with either simulated or acquired contrast-enhanced images using PI-RADS, version 2.1; agreement was assessed with Cohen κ. Results A total of 567 male patients (mean age, 66 years ± 11 [SD]) were divided into a training test set (n = 244), internal test set (n = 104), external test set 1 (n = 143), and external test set 2 (n = 76). Simulated and acquired contrast-enhanced images demonstrated high similarity (multiscale structural similarity index: 0.82, 0.71, and 0.69 for internal test set, external test set 1, and external test set 2, respectively) with excellent reader agreement of PI-RADS scores (Cohen κ, 0.96; 95% CI: 0.94, 0.98). When simulated contrast-enhanced imaging was added to biparametric MRI, 34 of 323 (10.5%) patients were upgraded to PI-RADS 4 from PI-RADS 3. Conclusion It was feasible to generate simulated contrast-enhanced prostate MRI using deep learning. The simulated and acquired contrast-enhanced MRI scans exhibited high similarity and demonstrated excellent agreement in assessing clinically significant prostate cancer based on PI-RADS, version 2.1. © RSNA, 2025 Supplemental material is available for this article. See also the editorial by Neji and Goh in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助Cx采纳,获得10
刚刚
刚刚
1秒前
junio完成签到 ,获得积分10
1秒前
春春发布了新的文献求助10
1秒前
1秒前
努力毕业的虎三撇完成签到,获得积分10
1秒前
无情莫英发布了新的文献求助10
1秒前
科研通AI5应助HBY采纳,获得30
2秒前
2秒前
asymmetric糖发布了新的文献求助10
2秒前
thousandlong发布了新的文献求助10
2秒前
3秒前
accept应助xu采纳,获得10
3秒前
完美世界应助田小姐采纳,获得10
3秒前
4秒前
Aurora发布了新的文献求助10
4秒前
今后应助Nancy采纳,获得10
4秒前
冰魂应助Wmin采纳,获得20
4秒前
睡到自然醒完成签到 ,获得积分10
5秒前
5秒前
一一完成签到,获得积分10
6秒前
voyager完成签到,获得积分10
6秒前
一一发布了新的文献求助10
6秒前
科研通AI5应助林早上采纳,获得10
7秒前
动漫大师发布了新的文献求助10
7秒前
开心完成签到 ,获得积分10
7秒前
科研小白完成签到,获得积分10
7秒前
希望天下0贩的0应助lc339采纳,获得10
8秒前
8秒前
8秒前
8秒前
赵雷发布了新的文献求助10
9秒前
39完成签到,获得积分10
10秒前
小詹发布了新的文献求助10
10秒前
jody应助七芙采纳,获得10
10秒前
thousandlong完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789084
求助须知:如何正确求助?哪些是违规求助? 3334196
关于积分的说明 10267701
捐赠科研通 3050439
什么是DOI,文献DOI怎么找? 1674012
邀请新用户注册赠送积分活动 802396
科研通“疑难数据库(出版商)”最低求助积分说明 760570