Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer

医学 前列腺癌 对比度(视觉) 前列腺 放射科 多参数磁共振成像 磁共振成像 癌症 医学物理学 人工智能 内科学 计算机科学
作者
Hongyan Huang,Junyang Mo,Zhiguang Ding,Xuehua Peng,Ruihao Liu,Danping Zhuang,Yu‐Zhong Zhang,Genwen Hu,Bingsheng Huang,Yingwei Qiu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:314 (1) 被引量:1
标识
DOI:10.1148/radiol.240238
摘要

Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1. Materials and Methods Male patients with suspected prostate cancer who underwent multiparametric MRI were retrospectively included from three centers from April 2020 to April 2023. A deep learning model (pix2pix algorithm) was trained to synthesize contrast-enhanced MRI scans from four noncontrast MRI sequences (T1-weighted imaging, T2-weighted imaging, diffusion-weighted imaging, and apparent diffusion coefficient maps) and then tested on an internal and two external datasets. The reference standard for model training was the second postcontrast phase of the dynamic contrast-enhanced sequence. Similarity between simulated and acquired contrast-enhanced images was evaluated using the multiscale structural similarity index. Three radiologists independently scored T2-weighted and diffusion-weighted MRI with either simulated or acquired contrast-enhanced images using PI-RADS, version 2.1; agreement was assessed with Cohen κ. Results A total of 567 male patients (mean age, 66 years ± 11 [SD]) were divided into a training test set (n = 244), internal test set (n = 104), external test set 1 (n = 143), and external test set 2 (n = 76). Simulated and acquired contrast-enhanced images demonstrated high similarity (multiscale structural similarity index: 0.82, 0.71, and 0.69 for internal test set, external test set 1, and external test set 2, respectively) with excellent reader agreement of PI-RADS scores (Cohen κ, 0.96; 95% CI: 0.94, 0.98). When simulated contrast-enhanced imaging was added to biparametric MRI, 34 of 323 (10.5%) patients were upgraded to PI-RADS 4 from PI-RADS 3. Conclusion It was feasible to generate simulated contrast-enhanced prostate MRI using deep learning. The simulated and acquired contrast-enhanced MRI scans exhibited high similarity and demonstrated excellent agreement in assessing clinically significant prostate cancer based on PI-RADS, version 2.1. © RSNA, 2025 Supplemental material is available for this article. See also the editorial by Neji and Goh in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzz发布了新的文献求助10
1秒前
研友_Zzrx6Z完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
汉堡包应助NOTHING采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得50
4秒前
quhayley应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
坦率的匪应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得50
5秒前
orixero应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得50
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
czh应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
6秒前
SYLH应助科研通管家采纳,获得50
6秒前
大模型应助科研通管家采纳,获得10
6秒前
6秒前
斯文败类应助Keyl采纳,获得10
6秒前
褪黑素应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
努力科研霸王龙完成签到 ,获得积分10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021