A Pine Wilt Disease Detection Model Integrated with Mamba Model and Attention Mechanisms Using UAV Imagery

计算机科学 预处理器 遥感 环境科学 人工智能 棱锥(几何) 地理 数学 几何学
作者
M. Bai,Di Xu,Limtak Yu,Jian Ding,Haifeng Lin
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:17 (2): 255-255
标识
DOI:10.3390/rs17020255
摘要

Pine wilt disease (PWD) is a highly destructive worldwide forest quarantine disease that has the potential to destroy entire pine forests in a relatively brief period, resulting in significant economic losses and environmental damage. Manual monitoring, biochemical detection and satellite remote sensing are frequently inadequate for the timely detection and control of pine wilt disease. This paper presents a fusion model, which integrates the Mamba model and the attention mechanism, for deployment on unmanned aerial vehicles (UAVs) to detect infected pine trees. The experimental dataset presented in this paper comprises images of pine trees captured by UAVs in mixed forests. The images were gathered primarily during the spring of 2023, spanning the months of February to May. The images were subjected to a preprocessing phase, during which they were transformed into the research dataset. The fusion model comprised three principal components. The initial component is the Mamba backbone network with State Space Model (SSM) at its core, which is capable of extracting pine wilt features with a high degree of efficacy. The second component is the attention network, which enables our fusion model to center on PWD features with greater efficacy. The optimal configuration was determined through an evaluation of various attention mechanism modules, including four attention modules. The third component, Path Aggregation Feature Pyramid Network (PAFPN), facilitates the fusion and refinement of data at varying scales, thereby enhancing the model’s capacity to detect multi-scale objects. Furthermore, the convolutional layers within the model have been replaced with depth separable convolutional layers (DSconv), which has the additional benefit of reducing the number of model parameters and improving the model’s detection speed. The final fusion model was validated on a test set, achieving an accuracy of 90.0%, a recall of 81.8%, a map of 86.5%, a parameter counts of 5.9 Mega, and a detection speed of 40.16 FPS. In comparison to Yolov8, the accuracy is enhanced by 7.1%, the recall by 5.4%, and the map by 3.1%. These outcomes demonstrate that our fusion model is appropriate for implementation on edge devices, such as UAVs, and is capable of effective detection of PWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助无奈苡采纳,获得10
刚刚
852应助落寞银耳汤采纳,获得10
刚刚
完美世界应助玩命的绾绾采纳,获得10
刚刚
Orange应助punch采纳,获得10
刚刚
科研通AI5应助可爱柠檬采纳,获得10
1秒前
1秒前
打打应助haitun采纳,获得10
2秒前
虹虹完成签到 ,获得积分10
2秒前
在水一方应助永野芽郁采纳,获得10
3秒前
Honghao发布了新的文献求助20
3秒前
3秒前
小杨完成签到,获得积分10
4秒前
大模型应助punch采纳,获得10
4秒前
CodeCraft应助天天采纳,获得10
5秒前
所所应助天天采纳,获得10
5秒前
潇涯发布了新的文献求助30
6秒前
TTK发布了新的文献求助50
7秒前
量子星尘发布了新的文献求助10
7秒前
宅心仁厚完成签到 ,获得积分10
8秒前
punch发布了新的文献求助10
9秒前
dfswf完成签到 ,获得积分10
10秒前
Legend_完成签到 ,获得积分10
11秒前
11秒前
12秒前
潇涯完成签到,获得积分10
12秒前
13秒前
13秒前
科研通AI5应助qiqi1111采纳,获得10
13秒前
14秒前
14秒前
15秒前
CipherSage应助123采纳,获得10
15秒前
江愉应助妮妮采纳,获得10
16秒前
冷傲虔发布了新的文献求助10
16秒前
17秒前
haitun发布了新的文献求助10
17秒前
道衍先一完成签到,获得积分10
17秒前
大学生发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
小乔发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3659435
求助须知:如何正确求助?哪些是违规求助? 3220982
关于积分的说明 9738638
捐赠科研通 2930220
什么是DOI,文献DOI怎么找? 1604352
邀请新用户注册赠送积分活动 757267
科研通“疑难数据库(出版商)”最低求助积分说明 734308