亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pre-trained artificial intelligence language model represents pragmatic language variability central to autism and genetically related phenotypes

自闭症 对话 心理学 判决 认知心理学 计算机科学 自闭症谱系障碍 脆性X综合征 人工智能 发展心理学 自然语言处理 沟通 精神科
作者
Joseph C. Y. Lau,Emily B. Landau,Qingcheng Zeng,Ronghui Zhang,Stephanie Crawford,Rob Voigt,Molly Losh
出处
期刊:Autism [SAGE]
标识
DOI:10.1177/13623613241304488
摘要

Many individuals with autism experience challenges using language in social contexts (i.e., pragmatic language). Characterizing and understanding pragmatic variability is important to inform intervention strategies and the etiology of communication challenges in autism; however, current manual coding-based methods are often time and labor intensive, and not readily applied in ample sample sizes. This proof-of-concept methodological study employed an artificial intelligence pre-trained language model, Bidirectional Encoder Representations from Transformers, as a tool to address such challenges. We applied Bidirectional Encoder Representations from Transformers to computationally index pragmatic-related variability in autism and in genetically related phenotypes displaying pragmatic differences, namely, in parents of autistic individuals, fragile X syndrome, and FMR1 premutation. Findings suggest that without model fine-tuning, Bidirectional Encoder Representations from Transformers’s Next Sentence Prediction module was able to derive estimates that differentiate autistic from non-autistic groups. Moreover, such computational estimates correlated with manually coded characterization of pragmatic abilities that contribute to conversational coherence, not only in autism but also in the other genetically related phenotypes. This study represents a step forward in evaluating the efficacy of artificial intelligence language models for capturing clinically important pragmatic differences and variability related to autism, showcasing the potential of artificial intelligence to provide automatized, efficient, and objective tools for pragmatic characterization to help advance the field. Lay abstract Autism is clinically defined by challenges with social language, including difficulties offering on-topic language in a conversation. Similar differences are also seen in genetically related conditions such as fragile X syndrome (FXS), and even among those carrying autism-related genes who do not have clinical diagnoses (e.g., the first-degree relatives of autistic individuals and carriers of the FMR1 premutation), which suggests there are genetic influences on social language related to the genes involved in autism. Characterization of social language is therefore important for informing potential intervention strategies and understanding the causes of communication challenges in autism. However, current tools for characterizing social language in both clinical and research settings are very time and labor intensive. In this study, we test an automized computational method that may address this problem. We used a type of artificial intelligence known as pre-trained language model to measure aspects of social language in autistic individuals and their parents, non-autistic comparison groups, and individuals with FXS and the FMR1 premutation. Findings suggest that these artificial intelligence approaches were able to identify differences in social language in autism, and to provide insight into the individuals’ ability to keep a conversation on-topic. These findings also were associated with broader measures of participants’ social communication ability. This study is one of the first to use artificial intelligence models to capture important differences in social language in autism and genetically related groups, demonstrating how artificial intelligence might be used to provide automatized, efficient, and objective tools for language characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
慕青应助愤怒的亦旋采纳,获得10
6秒前
6秒前
14秒前
在水一方应助韶孤容采纳,获得30
43秒前
angerray发布了新的文献求助10
48秒前
50秒前
yaoyao发布了新的文献求助10
56秒前
1分钟前
1分钟前
所所应助yaoyao采纳,获得10
1分钟前
1分钟前
自由一一完成签到,获得积分10
1分钟前
1分钟前
07应助angerray采纳,获得10
2分钟前
2分钟前
2分钟前
不复返的杆完成签到 ,获得积分10
2分钟前
萝卜大王发布了新的文献求助10
2分钟前
舒心的冷安完成签到,获得积分20
2分钟前
奈思完成签到 ,获得积分10
2分钟前
归海梦岚完成签到,获得积分0
2分钟前
欣喜的代容完成签到 ,获得积分10
2分钟前
潇洒绿蕊完成签到,获得积分10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
韶孤容发布了新的文献求助30
3分钟前
Umair发布了新的文献求助20
3分钟前
韶孤容完成签到,获得积分10
3分钟前
ding应助舒心的冷安采纳,获得30
3分钟前
丘比特应助阿司匹林采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
leek完成签到 ,获得积分10
3分钟前
GeneYang完成签到,获得积分10
3分钟前
liuyan发布了新的文献求助10
3分钟前
3分钟前
Ray羽曦~发布了新的文献求助10
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303216
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482400
捐赠科研通 2611434
什么是DOI,文献DOI怎么找? 1425877
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 646980