清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Pre-trained artificial intelligence language model represents pragmatic language variability central to autism and genetically related phenotypes

自闭症 对话 心理学 判决 认知心理学 计算机科学 自闭症谱系障碍 脆性X综合征 人工智能 发展心理学 自然语言处理 沟通 精神科
作者
Joseph C. Y. Lau,Emily B. Landau,Qingcheng Zeng,Ronghui Zhang,Stephanie Crawford,Rob Voigt,Molly Losh
出处
期刊:Autism [SAGE]
标识
DOI:10.1177/13623613241304488
摘要

Many individuals with autism experience challenges using language in social contexts (i.e., pragmatic language). Characterizing and understanding pragmatic variability is important to inform intervention strategies and the etiology of communication challenges in autism; however, current manual coding-based methods are often time and labor intensive, and not readily applied in ample sample sizes. This proof-of-concept methodological study employed an artificial intelligence pre-trained language model, Bidirectional Encoder Representations from Transformers, as a tool to address such challenges. We applied Bidirectional Encoder Representations from Transformers to computationally index pragmatic-related variability in autism and in genetically related phenotypes displaying pragmatic differences, namely, in parents of autistic individuals, fragile X syndrome, and FMR1 premutation. Findings suggest that without model fine-tuning, Bidirectional Encoder Representations from Transformers’s Next Sentence Prediction module was able to derive estimates that differentiate autistic from non-autistic groups. Moreover, such computational estimates correlated with manually coded characterization of pragmatic abilities that contribute to conversational coherence, not only in autism but also in the other genetically related phenotypes. This study represents a step forward in evaluating the efficacy of artificial intelligence language models for capturing clinically important pragmatic differences and variability related to autism, showcasing the potential of artificial intelligence to provide automatized, efficient, and objective tools for pragmatic characterization to help advance the field. Lay abstract Autism is clinically defined by challenges with social language, including difficulties offering on-topic language in a conversation. Similar differences are also seen in genetically related conditions such as fragile X syndrome (FXS), and even among those carrying autism-related genes who do not have clinical diagnoses (e.g., the first-degree relatives of autistic individuals and carriers of the FMR1 premutation), which suggests there are genetic influences on social language related to the genes involved in autism. Characterization of social language is therefore important for informing potential intervention strategies and understanding the causes of communication challenges in autism. However, current tools for characterizing social language in both clinical and research settings are very time and labor intensive. In this study, we test an automized computational method that may address this problem. We used a type of artificial intelligence known as pre-trained language model to measure aspects of social language in autistic individuals and their parents, non-autistic comparison groups, and individuals with FXS and the FMR1 premutation. Findings suggest that these artificial intelligence approaches were able to identify differences in social language in autism, and to provide insight into the individuals’ ability to keep a conversation on-topic. These findings also were associated with broader measures of participants’ social communication ability. This study is one of the first to use artificial intelligence models to capture important differences in social language in autism and genetically related groups, demonstrating how artificial intelligence might be used to provide automatized, efficient, and objective tools for language characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助ykssss采纳,获得10
16秒前
26秒前
科研通AI6.1应助悠悠采纳,获得10
38秒前
李燕伟完成签到 ,获得积分10
47秒前
50秒前
悠悠发布了新的文献求助10
57秒前
英姑应助Ellen采纳,获得30
1分钟前
1分钟前
1分钟前
ykssss发布了新的文献求助10
1分钟前
忘忧Aquarius完成签到,获得积分10
1分钟前
2分钟前
2分钟前
内向的绿应助读书的时候采纳,获得10
2分钟前
3分钟前
hhuajw应助读书的时候采纳,获得10
3分钟前
3分钟前
Ellen发布了新的文献求助30
3分钟前
顾矜应助读书的时候采纳,获得10
3分钟前
潜行者完成签到 ,获得积分10
4分钟前
Alger完成签到,获得积分10
4分钟前
科研通AI6.1应助悠悠采纳,获得10
4分钟前
qq完成签到 ,获得积分10
4分钟前
4分钟前
悠悠完成签到,获得积分20
4分钟前
4分钟前
悠悠发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高挑的白旋风完成签到,获得积分10
5分钟前
5分钟前
阿俊完成签到 ,获得积分10
5分钟前
lydiaabc完成签到,获得积分10
5分钟前
5分钟前
6分钟前
輕瘋发布了新的文献求助10
6分钟前
Ava应助读书的时候采纳,获得10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732540
求助须知:如何正确求助?哪些是违规求助? 5340403
关于积分的说明 15322326
捐赠科研通 4878049
什么是DOI,文献DOI怎么找? 2620881
邀请新用户注册赠送积分活动 1570054
关于科研通互助平台的介绍 1526759