BioElectra-BiLSTM-Dual Attention classifier for optimizing multilabel scientific literature classification

计算机科学 人工智能 元数据 搜索引擎索引 编码器 文件分类 分类器(UML) 机器学习 对偶(语法数字) 文字嵌入 情报检索 嵌入 艺术 文学类 操作系统
作者
Muhammad Inaam ul haq,Qianmu Li,Khalid Mahmood,Ayesha Shafique,Rizwan Ullah
出处
期刊:The Computer Journal [Oxford University Press]
标识
DOI:10.1093/comjnl/bxae132
摘要

Abstract Scientific literature is growing in volume with time. The number of papers published each year by 28 100 journals is 2.5 million. The citation indexes and search engines are used extensively to find these publications. An individual receives many documents in response to a query, but only a few are relevant. The final documents lack structure due to inadequate indexing. Many systems index research papers using keywords instead of subject hierarchies. In the scientific literature classification paradigm, various multilabel classification methods have been proposed based on metadata features. The existing metadata-driven statistical measures use bag of words and traditional embedding techniques, like Word2Vec and BERT, which cannot quantify textual properties effectively. In this paper, we try to solve the limitations of existing classification techniques by unveiling the semantic context of the words using an advanced transformer-based recurrent neural networks (RNN) approach incorporating Dual Attention and layer-wise learning rate to enhance the classification performance. We propose a novel model, BioElectra-BiLSTM-Dual Attention that extracts the semantic features from the titles and abstracts of the research articles using BioElectra-encoder and then BILSTM layer along with Dual Attention label embeddings their correlation matrix and layer-wise learning rate strategy employed for performance enhancement. We evaluated the performance of the proposed model on the multilabel scientific literature LitCovid dataset and the results suggest that it significantly improves the macro-F1 and micro-F1 score as compared to the state-of-the-art baselines (ML-Net, Binary Bert, and LitMCBert).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助30
2秒前
机智的紫青完成签到 ,获得积分20
2秒前
丘比特应助bwl采纳,获得10
4秒前
5秒前
5秒前
海王類完成签到,获得积分10
6秒前
留胡子的迎荷完成签到,获得积分10
6秒前
小小虾完成签到 ,获得积分10
6秒前
7秒前
王嘉文发布了新的文献求助20
7秒前
FashionBoy应助庄严采纳,获得10
7秒前
Zox完成签到,获得积分10
7秒前
Owen应助科研工具人采纳,获得10
8秒前
GSQ发布了新的文献求助20
9秒前
深情安青应助聪慧跳跳糖采纳,获得10
10秒前
yangzai发布了新的文献求助10
10秒前
求是发布了新的文献求助10
10秒前
怕黑寻梅完成签到,获得积分10
10秒前
ED应助ironsilica采纳,获得10
10秒前
大观天下发布了新的文献求助10
11秒前
11秒前
丘比特应助王王采纳,获得10
11秒前
13秒前
王嘉文完成签到 ,获得积分20
14秒前
orixero应助乔苏惠娜采纳,获得10
15秒前
xxx完成签到,获得积分20
16秒前
16秒前
16秒前
Rain完成签到,获得积分10
17秒前
17秒前
guo发布了新的文献求助10
18秒前
18秒前
Hailin完成签到,获得积分10
20秒前
共享精神应助GSQ采纳,获得10
20秒前
酷波er应助怕黑寻梅采纳,获得10
20秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
20秒前
21秒前
21秒前
所所应助reborn采纳,获得10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961103
求助须知:如何正确求助?哪些是违规求助? 3507388
关于积分的说明 11135834
捐赠科研通 3239867
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803152