BioElectra-BiLSTM-Dual Attention classifier for optimizing multilabel scientific literature classification

计算机科学 人工智能 元数据 搜索引擎索引 编码器 文件分类 分类器(UML) 机器学习 对偶(语法数字) 文字嵌入 情报检索 嵌入 艺术 文学类 操作系统
作者
Muhammad Inaam ul haq,Qianmu Li,Khalid Mahmood,Ayesha Shafique,Rizwan Ullah
出处
期刊:The Computer Journal [Oxford University Press]
标识
DOI:10.1093/comjnl/bxae132
摘要

Abstract Scientific literature is growing in volume with time. The number of papers published each year by 28 100 journals is 2.5 million. The citation indexes and search engines are used extensively to find these publications. An individual receives many documents in response to a query, but only a few are relevant. The final documents lack structure due to inadequate indexing. Many systems index research papers using keywords instead of subject hierarchies. In the scientific literature classification paradigm, various multilabel classification methods have been proposed based on metadata features. The existing metadata-driven statistical measures use bag of words and traditional embedding techniques, like Word2Vec and BERT, which cannot quantify textual properties effectively. In this paper, we try to solve the limitations of existing classification techniques by unveiling the semantic context of the words using an advanced transformer-based recurrent neural networks (RNN) approach incorporating Dual Attention and layer-wise learning rate to enhance the classification performance. We propose a novel model, BioElectra-BiLSTM-Dual Attention that extracts the semantic features from the titles and abstracts of the research articles using BioElectra-encoder and then BILSTM layer along with Dual Attention label embeddings their correlation matrix and layer-wise learning rate strategy employed for performance enhancement. We evaluated the performance of the proposed model on the multilabel scientific literature LitCovid dataset and the results suggest that it significantly improves the macro-F1 and micro-F1 score as compared to the state-of-the-art baselines (ML-Net, Binary Bert, and LitMCBert).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TCAcycle发布了新的文献求助10
1秒前
邵将发布了新的文献求助10
1秒前
2秒前
打打应助鲤鱼新儿采纳,获得30
3秒前
3秒前
Roy发布了新的文献求助10
3秒前
万点草发布了新的文献求助30
4秒前
7秒前
127完成签到,获得积分10
7秒前
8秒前
哎哟可爱完成签到,获得积分10
8秒前
9秒前
hd发布了新的文献求助10
10秒前
xu发布了新的文献求助10
10秒前
桐桐应助asdf采纳,获得10
11秒前
白三烯小童鞋完成签到 ,获得积分10
11秒前
11秒前
浮游应助依依采纳,获得10
12秒前
冷酷的浩天完成签到,获得积分10
13秒前
13秒前
xiu-er发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
16秒前
moon发布了新的文献求助10
18秒前
大神瓜发布了新的文献求助10
19秒前
婷婷婷完成签到 ,获得积分10
19秒前
番薯发布了新的文献求助30
20秒前
11发布了新的文献求助10
20秒前
21秒前
ZQP发布了新的文献求助10
22秒前
23秒前
大个应助panmin采纳,获得10
23秒前
藤椒辣鱼应助Wangjingxuan采纳,获得10
24秒前
在水一方应助zy采纳,获得10
24秒前
26秒前
ZQP完成签到,获得积分10
27秒前
语默完成签到 ,获得积分10
28秒前
大胆冰岚完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287927
求助须知:如何正确求助?哪些是违规求助? 4439938
关于积分的说明 13823438
捐赠科研通 4322173
什么是DOI,文献DOI怎么找? 2372367
邀请新用户注册赠送积分活动 1367876
关于科研通互助平台的介绍 1331448