亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BioElectra-BiLSTM-Dual Attention classifier for optimizing multilabel scientific literature classification

计算机科学 人工智能 元数据 搜索引擎索引 编码器 文件分类 分类器(UML) 机器学习 对偶(语法数字) 文字嵌入 情报检索 嵌入 操作系统 文学类 艺术
作者
Muhammad Inaam ul haq,Qianmu Li,Khalid Mahmood,Ayesha Shafique,Rizwan Ullah
出处
期刊:The Computer Journal [Oxford University Press]
标识
DOI:10.1093/comjnl/bxae132
摘要

Abstract Scientific literature is growing in volume with time. The number of papers published each year by 28 100 journals is 2.5 million. The citation indexes and search engines are used extensively to find these publications. An individual receives many documents in response to a query, but only a few are relevant. The final documents lack structure due to inadequate indexing. Many systems index research papers using keywords instead of subject hierarchies. In the scientific literature classification paradigm, various multilabel classification methods have been proposed based on metadata features. The existing metadata-driven statistical measures use bag of words and traditional embedding techniques, like Word2Vec and BERT, which cannot quantify textual properties effectively. In this paper, we try to solve the limitations of existing classification techniques by unveiling the semantic context of the words using an advanced transformer-based recurrent neural networks (RNN) approach incorporating Dual Attention and layer-wise learning rate to enhance the classification performance. We propose a novel model, BioElectra-BiLSTM-Dual Attention that extracts the semantic features from the titles and abstracts of the research articles using BioElectra-encoder and then BILSTM layer along with Dual Attention label embeddings their correlation matrix and layer-wise learning rate strategy employed for performance enhancement. We evaluated the performance of the proposed model on the multilabel scientific literature LitCovid dataset and the results suggest that it significantly improves the macro-F1 and micro-F1 score as compared to the state-of-the-art baselines (ML-Net, Binary Bert, and LitMCBert).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风起_完成签到 ,获得积分10
15秒前
健壮的鑫鹏完成签到,获得积分10
31秒前
江夏清完成签到,获得积分10
31秒前
调皮千兰发布了新的文献求助10
37秒前
积极凌兰完成签到 ,获得积分10
56秒前
Willow完成签到,获得积分10
1分钟前
调皮千兰发布了新的文献求助10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
sunfield2014发布了新的文献求助10
2分钟前
2分钟前
2分钟前
天天快乐应助sunfield2014采纳,获得10
2分钟前
天天快乐应助sunfield2014采纳,获得10
2分钟前
烟花应助sunfield2014采纳,获得10
2分钟前
李健应助sunfield2014采纳,获得10
2分钟前
在水一方应助sunfield2014采纳,获得10
2分钟前
斯文败类应助sunfield2014采纳,获得30
2分钟前
脑洞疼应助sunfield2014采纳,获得10
2分钟前
打打应助sunfield2014采纳,获得10
2分钟前
小二郎应助sunfield2014采纳,获得10
2分钟前
大个应助sunfield2014采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
一道光发布了新的文献求助30
3分钟前
iShine完成签到 ,获得积分10
3分钟前
一道光完成签到,获得积分10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
Rn完成签到 ,获得积分0
4分钟前
派大星完成签到 ,获得积分10
4分钟前
BowieHuang应助调皮千兰采纳,获得10
4分钟前
王不留行完成签到,获得积分10
4分钟前
4分钟前
852应助眉间尺采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561466
求助须知:如何正确求助?哪些是违规求助? 4646576
关于积分的说明 14678674
捐赠科研通 4587855
什么是DOI,文献DOI怎么找? 2517242
邀请新用户注册赠送积分活动 1490539
关于科研通互助平台的介绍 1461500