BioElectra-BiLSTM-Dual Attention classifier for optimizing multilabel scientific literature classification

计算机科学 人工智能 元数据 搜索引擎索引 编码器 文件分类 分类器(UML) 机器学习 对偶(语法数字) 文字嵌入 情报检索 嵌入 艺术 文学类 操作系统
作者
Muhammad Inaam ul haq,Qianmu Li,Khalid Mahmood,Ayesha Shafique,Rizwan Ullah
出处
期刊:The Computer Journal [Oxford University Press]
标识
DOI:10.1093/comjnl/bxae132
摘要

Abstract Scientific literature is growing in volume with time. The number of papers published each year by 28 100 journals is 2.5 million. The citation indexes and search engines are used extensively to find these publications. An individual receives many documents in response to a query, but only a few are relevant. The final documents lack structure due to inadequate indexing. Many systems index research papers using keywords instead of subject hierarchies. In the scientific literature classification paradigm, various multilabel classification methods have been proposed based on metadata features. The existing metadata-driven statistical measures use bag of words and traditional embedding techniques, like Word2Vec and BERT, which cannot quantify textual properties effectively. In this paper, we try to solve the limitations of existing classification techniques by unveiling the semantic context of the words using an advanced transformer-based recurrent neural networks (RNN) approach incorporating Dual Attention and layer-wise learning rate to enhance the classification performance. We propose a novel model, BioElectra-BiLSTM-Dual Attention that extracts the semantic features from the titles and abstracts of the research articles using BioElectra-encoder and then BILSTM layer along with Dual Attention label embeddings their correlation matrix and layer-wise learning rate strategy employed for performance enhancement. We evaluated the performance of the proposed model on the multilabel scientific literature LitCovid dataset and the results suggest that it significantly improves the macro-F1 and micro-F1 score as compared to the state-of-the-art baselines (ML-Net, Binary Bert, and LitMCBert).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘洋发布了新的文献求助10
2秒前
SCI硬通货完成签到 ,获得积分10
2秒前
上官若男应助淡然紫寒采纳,获得10
3秒前
3秒前
3秒前
Dreamsli完成签到,获得积分10
4秒前
虚幻青曼完成签到,获得积分10
4秒前
TTT完成签到,获得积分10
5秒前
waomi完成签到 ,获得积分10
6秒前
于丽萍发布了新的文献求助10
6秒前
阿湫发布了新的文献求助10
8秒前
Ava应助可靠的又亦采纳,获得10
10秒前
1111111发布了新的文献求助10
10秒前
11秒前
今后应助飞翔的企鹅采纳,获得10
15秒前
真水无香发布了新的文献求助10
16秒前
脑洞疼应助马库拉格采纳,获得10
16秒前
顾矜应助lele采纳,获得10
16秒前
16秒前
科研公主完成签到,获得积分10
20秒前
21秒前
时生完成签到 ,获得积分10
22秒前
我是老大应助愉快又莲采纳,获得10
23秒前
可爱的函函应助平淡博采纳,获得10
23秒前
25秒前
浮游应助彪壮的绮烟采纳,获得10
26秒前
在水一方应助ztt采纳,获得10
26秒前
26秒前
26秒前
浮游应助花开城北采纳,获得10
27秒前
30秒前
butterfly发布了新的文献求助10
30秒前
马库拉格发布了新的文献求助10
30秒前
31秒前
娜na完成签到,获得积分10
33秒前
34秒前
35秒前
36秒前
李健应助冯前浪采纳,获得10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408