亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BioElectra-BiLSTM-Dual Attention classifier for optimizing multilabel scientific literature classification

计算机科学 人工智能 元数据 搜索引擎索引 编码器 文件分类 分类器(UML) 机器学习 对偶(语法数字) 文字嵌入 情报检索 嵌入 操作系统 文学类 艺术
作者
Muhammad Inaam ul haq,Qianmu Li,Khalid Mahmood,Ayesha Shafique,Rizwan Ullah
出处
期刊:The Computer Journal [Oxford University Press]
标识
DOI:10.1093/comjnl/bxae132
摘要

Abstract Scientific literature is growing in volume with time. The number of papers published each year by 28 100 journals is 2.5 million. The citation indexes and search engines are used extensively to find these publications. An individual receives many documents in response to a query, but only a few are relevant. The final documents lack structure due to inadequate indexing. Many systems index research papers using keywords instead of subject hierarchies. In the scientific literature classification paradigm, various multilabel classification methods have been proposed based on metadata features. The existing metadata-driven statistical measures use bag of words and traditional embedding techniques, like Word2Vec and BERT, which cannot quantify textual properties effectively. In this paper, we try to solve the limitations of existing classification techniques by unveiling the semantic context of the words using an advanced transformer-based recurrent neural networks (RNN) approach incorporating Dual Attention and layer-wise learning rate to enhance the classification performance. We propose a novel model, BioElectra-BiLSTM-Dual Attention that extracts the semantic features from the titles and abstracts of the research articles using BioElectra-encoder and then BILSTM layer along with Dual Attention label embeddings their correlation matrix and layer-wise learning rate strategy employed for performance enhancement. We evaluated the performance of the proposed model on the multilabel scientific literature LitCovid dataset and the results suggest that it significantly improves the macro-F1 and micro-F1 score as compared to the state-of-the-art baselines (ML-Net, Binary Bert, and LitMCBert).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
鹏虫虫发布了新的文献求助10
12秒前
12秒前
26秒前
Ava应助科研通管家采纳,获得10
37秒前
田様应助科研通管家采纳,获得10
37秒前
深情安青应助科研通管家采纳,获得10
37秒前
情怀应助科研通管家采纳,获得10
37秒前
40秒前
1分钟前
1分钟前
1分钟前
海绵发布了新的文献求助10
1分钟前
1分钟前
1分钟前
海绵完成签到,获得积分20
1分钟前
科研通AI6应助海绵采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
小橘子吃傻子完成签到,获得积分10
1分钟前
zxin完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
ZGavin应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
犹豫幻丝完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
ZGavin应助科研通管家采纳,获得10
4分钟前
5分钟前
朴素千亦完成签到 ,获得积分10
5分钟前
5分钟前
mickaqi完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454983
求助须知:如何正确求助?哪些是违规求助? 4562242
关于积分的说明 14284984
捐赠科研通 4486135
什么是DOI,文献DOI怎么找? 2457255
邀请新用户注册赠送积分活动 1447868
关于科研通互助平台的介绍 1423090