BioElectra-BiLSTM-Dual Attention classifier for optimizing multilabel scientific literature classification

计算机科学 人工智能 元数据 搜索引擎索引 编码器 文件分类 分类器(UML) 机器学习 对偶(语法数字) 文字嵌入 情报检索 嵌入 艺术 文学类 操作系统
作者
Muhammad Inaam ul haq,Qianmu Li,Khalid Mahmood,Ayesha Shafique,Rizwan Ullah
出处
期刊:The Computer Journal [Oxford University Press]
标识
DOI:10.1093/comjnl/bxae132
摘要

Abstract Scientific literature is growing in volume with time. The number of papers published each year by 28 100 journals is 2.5 million. The citation indexes and search engines are used extensively to find these publications. An individual receives many documents in response to a query, but only a few are relevant. The final documents lack structure due to inadequate indexing. Many systems index research papers using keywords instead of subject hierarchies. In the scientific literature classification paradigm, various multilabel classification methods have been proposed based on metadata features. The existing metadata-driven statistical measures use bag of words and traditional embedding techniques, like Word2Vec and BERT, which cannot quantify textual properties effectively. In this paper, we try to solve the limitations of existing classification techniques by unveiling the semantic context of the words using an advanced transformer-based recurrent neural networks (RNN) approach incorporating Dual Attention and layer-wise learning rate to enhance the classification performance. We propose a novel model, BioElectra-BiLSTM-Dual Attention that extracts the semantic features from the titles and abstracts of the research articles using BioElectra-encoder and then BILSTM layer along with Dual Attention label embeddings their correlation matrix and layer-wise learning rate strategy employed for performance enhancement. We evaluated the performance of the proposed model on the multilabel scientific literature LitCovid dataset and the results suggest that it significantly improves the macro-F1 and micro-F1 score as compared to the state-of-the-art baselines (ML-Net, Binary Bert, and LitMCBert).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃点水果保护局完成签到 ,获得积分10
1秒前
gs完成签到,获得积分10
1秒前
Xyyy完成签到,获得积分10
1秒前
2秒前
白石杏完成签到,获得积分10
4秒前
ll200207完成签到,获得积分10
5秒前
凶狠的乐巧完成签到,获得积分10
5秒前
Lin发布了新的文献求助10
6秒前
三七发布了新的文献求助10
6秒前
6秒前
鸣隐发布了新的文献求助10
6秒前
7秒前
7秒前
软豆皮完成签到,获得积分10
7秒前
lan完成签到,获得积分10
8秒前
英姑应助松松果采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
chillin发布了新的文献求助10
10秒前
zhui发布了新的文献求助10
10秒前
薪炭林完成签到,获得积分10
11秒前
Rrr发布了新的文献求助10
11秒前
11秒前
SCISSH完成签到 ,获得积分10
11秒前
FEI发布了新的文献求助10
12秒前
科研通AI5应助奔奔采纳,获得10
13秒前
星辰大海应助八八采纳,获得20
13秒前
gaga发布了新的文献求助10
13秒前
木子加y发布了新的文献求助10
13秒前
大大泡泡完成签到,获得积分10
14秒前
852应助zhui采纳,获得10
15秒前
芒果发布了新的文献求助10
15秒前
16秒前
前百年253完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794