Truncated Arctangent Rank Minimization and Double-Strategy Neighborhood Constraint Graph Inference for Drug–Disease Association Prediction

推论 图形 缩小 约束(计算机辅助设计) 药品 计算机科学 秩(图论) 反三角函数 联想(心理学) 数学 算法 人工智能 数学优化 组合数学 医学 药理学 心理学 数学分析 心理治疗师 几何学
作者
Tiyao Liu,Shudong Wang,Shanchen Pang,Xiaodong Tan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jcim.4c02276
摘要

Accurately identifying new therapeutic uses for drugs is essential to advancing pharmaceutical research and development. Graph inference techniques have shown great promise in predicting drug–disease associations, offering both high convergence accuracy and efficiency. However, most existing methods fail to sufficiently address the issue of numerous missing information in drug–disease association networks. Moreover, existing methods are often constrained by local or single-directional reasoning. To overcome these limitations, we propose a novel approach, truncated arctangent rank minimization and double-strategy neighborhood constraint graph inference (TARMDNGI), for drug–disease association prediction. First, we calculate Gaussian kernel and Laplace kernel similarities for both drugs and diseases, which are then integrated using nonlinear fusion techniques. We introduce a new matrix completion technique, referred to as TARM. TARM takes the adjacency matrix of drug–disease heterogeneous networks as the target matrix and enhances the robustness and formability of the edges of DDA networks by truncated arctangent rank minimization. Additionally, we propose a double-strategy neighborhood constrained graph inference method to predict drug–disease associations. This technique focuses on the neighboring nodes of drugs and diseases, filtering out potential noise from more distant nodes. Furthermore, the DNGI method employs both top-down and bottom-up strategies to infer associations using the entire drug–disease heterogeneous network. The synergy of the dual strategies can enhance the comprehensive processing of complex structures and cross-domain associations in heterogeneous graphs, ensuring that the rich information in the network is fully utilized. Experimental results consistently demonstrate that TARMDNGI outperforms state-of-the-art models across two drug–disease datasets, one lncRNA-disease dataset, and one microbe-disease dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
犹豫怜南发布了新的文献求助20
3秒前
5秒前
5秒前
5秒前
6秒前
6秒前
HITvagary完成签到,获得积分0
7秒前
不敢装睡完成签到,获得积分10
7秒前
8秒前
聂落雁完成签到,获得积分10
8秒前
芋泥丸丸发布了新的文献求助10
8秒前
xuejie驳回了慕青应助
8秒前
ZSC发布了新的文献求助10
9秒前
9秒前
跳跃发布了新的文献求助10
10秒前
追寻梦之发布了新的文献求助10
10秒前
10秒前
11秒前
小庄完成签到 ,获得积分10
11秒前
大胆的弼完成签到,获得积分10
12秒前
12秒前
yiyi发布了新的文献求助10
12秒前
ruru发布了新的文献求助10
12秒前
13秒前
可爱的函函应助辉腾采纳,获得10
13秒前
13秒前
王蕊发布了新的文献求助10
14秒前
14秒前
lxgz发布了新的文献求助10
14秒前
14秒前
Ava应助dd采纳,获得10
14秒前
bamboo应助细心怀亦采纳,获得20
14秒前
15秒前
15秒前
星辰大海应助TaoTaooooII采纳,获得10
15秒前
su123发布了新的文献求助10
15秒前
lawang发布了新的文献求助10
16秒前
zhonglv7应助lin采纳,获得10
16秒前
elang发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524