Truncated Arctangent Rank Minimization and Double-Strategy Neighborhood Constraint Graph Inference for Drug–Disease Association Prediction

推论 图形 缩小 约束(计算机辅助设计) 药品 计算机科学 秩(图论) 反三角函数 联想(心理学) 数学 算法 人工智能 数学优化 组合数学 医学 药理学 心理学 数学分析 几何学 心理治疗师
作者
Tiyao Liu,Shudong Wang,Shanchen Pang,Xiaodong Tan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jcim.4c02276
摘要

Accurately identifying new therapeutic uses for drugs is essential to advancing pharmaceutical research and development. Graph inference techniques have shown great promise in predicting drug–disease associations, offering both high convergence accuracy and efficiency. However, most existing methods fail to sufficiently address the issue of numerous missing information in drug–disease association networks. Moreover, existing methods are often constrained by local or single-directional reasoning. To overcome these limitations, we propose a novel approach, truncated arctangent rank minimization and double-strategy neighborhood constraint graph inference (TARMDNGI), for drug–disease association prediction. First, we calculate Gaussian kernel and Laplace kernel similarities for both drugs and diseases, which are then integrated using nonlinear fusion techniques. We introduce a new matrix completion technique, referred to as TARM. TARM takes the adjacency matrix of drug–disease heterogeneous networks as the target matrix and enhances the robustness and formability of the edges of DDA networks by truncated arctangent rank minimization. Additionally, we propose a double-strategy neighborhood constrained graph inference method to predict drug–disease associations. This technique focuses on the neighboring nodes of drugs and diseases, filtering out potential noise from more distant nodes. Furthermore, the DNGI method employs both top-down and bottom-up strategies to infer associations using the entire drug–disease heterogeneous network. The synergy of the dual strategies can enhance the comprehensive processing of complex structures and cross-domain associations in heterogeneous graphs, ensuring that the rich information in the network is fully utilized. Experimental results consistently demonstrate that TARMDNGI outperforms state-of-the-art models across two drug–disease datasets, one lncRNA-disease dataset, and one microbe-disease dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助半圆亻采纳,获得10
1秒前
1秒前
1秒前
NCMer1发布了新的文献求助10
1秒前
ht发布了新的文献求助10
2秒前
巴拉巴拉发布了新的文献求助10
2秒前
Ray发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
暴躁的语蕊完成签到,获得积分10
5秒前
THEXI发布了新的文献求助10
5秒前
Criminology34应助从容的灵凡采纳,获得10
6秒前
迷路的虔发布了新的文献求助10
7秒前
等清晨发布了新的文献求助10
7秒前
7秒前
7秒前
大模型应助沫沫采纳,获得10
8秒前
8秒前
8秒前
笨脑腐发布了新的文献求助10
8秒前
长孙曼香发布了新的文献求助10
9秒前
文献王完成签到,获得积分10
9秒前
慕青应助龙归大海采纳,获得10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
KanmenRider发布了新的文献求助10
11秒前
搜集达人应助小猫钓鱼采纳,获得10
11秒前
kobeliu发布了新的文献求助10
12秒前
12秒前
cc应助Yu采纳,获得20
12秒前
晴天发布了新的文献求助10
14秒前
kk发布了新的文献求助10
14秒前
不知发布了新的文献求助10
15秒前
聿木发布了新的文献求助10
15秒前
anglervlf发布了新的文献求助10
15秒前
Buneng完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713248
求助须知:如何正确求助?哪些是违规求助? 5214511
关于积分的说明 15270206
捐赠科研通 4865029
什么是DOI,文献DOI怎么找? 2611814
邀请新用户注册赠送积分活动 1562053
关于科研通互助平台的介绍 1519295