Truncated Arctangent Rank Minimization and Double-Strategy Neighborhood Constraint Graph Inference for Drug–Disease Association Prediction

推论 图形 缩小 约束(计算机辅助设计) 药品 计算机科学 秩(图论) 反三角函数 联想(心理学) 数学 算法 人工智能 数学优化 组合数学 医学 药理学 心理学 数学分析 心理治疗师 几何学
作者
Tiyao Liu,Shudong Wang,Shanchen Pang,Xiaodong Tan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c02276
摘要

Accurately identifying new therapeutic uses for drugs is essential to advancing pharmaceutical research and development. Graph inference techniques have shown great promise in predicting drug–disease associations, offering both high convergence accuracy and efficiency. However, most existing methods fail to sufficiently address the issue of numerous missing information in drug–disease association networks. Moreover, existing methods are often constrained by local or single-directional reasoning. To overcome these limitations, we propose a novel approach, truncated arctangent rank minimization and double-strategy neighborhood constraint graph inference (TARMDNGI), for drug–disease association prediction. First, we calculate Gaussian kernel and Laplace kernel similarities for both drugs and diseases, which are then integrated using nonlinear fusion techniques. We introduce a new matrix completion technique, referred to as TARM. TARM takes the adjacency matrix of drug–disease heterogeneous networks as the target matrix and enhances the robustness and formability of the edges of DDA networks by truncated arctangent rank minimization. Additionally, we propose a double-strategy neighborhood constrained graph inference method to predict drug–disease associations. This technique focuses on the neighboring nodes of drugs and diseases, filtering out potential noise from more distant nodes. Furthermore, the DNGI method employs both top-down and bottom-up strategies to infer associations using the entire drug–disease heterogeneous network. The synergy of the dual strategies can enhance the comprehensive processing of complex structures and cross-domain associations in heterogeneous graphs, ensuring that the rich information in the network is fully utilized. Experimental results consistently demonstrate that TARMDNGI outperforms state-of-the-art models across two drug–disease datasets, one lncRNA-disease dataset, and one microbe-disease dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐山夕完成签到,获得积分20
2秒前
Bing完成签到,获得积分10
3秒前
3秒前
5秒前
科研通AI5应助大利采纳,获得10
7秒前
7秒前
7秒前
7秒前
干净初彤发布了新的文献求助10
8秒前
8秒前
嘻嘻嘻完成签到,获得积分10
8秒前
上官若男应助就叫小王吧采纳,获得10
8秒前
med1640发布了新的文献求助10
11秒前
mixmix发布了新的文献求助10
11秒前
12秒前
dx完成签到,获得积分10
13秒前
13秒前
lance发布了新的文献求助10
14秒前
CMM完成签到,获得积分20
15秒前
YY发布了新的文献求助20
16秒前
16秒前
CMM发布了新的文献求助10
20秒前
20秒前
爆米花应助小憨憨采纳,获得10
21秒前
good_boy完成签到,获得积分10
25秒前
25秒前
25秒前
26秒前
迷路的夏之完成签到,获得积分10
26秒前
27秒前
优雅的盼夏完成签到 ,获得积分10
27秒前
北极熊指挥官大人完成签到,获得积分10
28秒前
29秒前
30秒前
32秒前
孔难破完成签到,获得积分10
32秒前
无花果应助冷傲的白卉采纳,获得10
33秒前
大利发布了新的文献求助10
33秒前
33秒前
哈哈哈哈发布了新的文献求助10
36秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009