Truncated Arctangent Rank Minimization and Double-Strategy Neighborhood Constraint Graph Inference for Drug–Disease Association Prediction

推论 图形 缩小 约束(计算机辅助设计) 药品 计算机科学 秩(图论) 反三角函数 联想(心理学) 数学 算法 人工智能 数学优化 组合数学 医学 药理学 心理学 数学分析 心理治疗师 几何学
作者
Tiyao Liu,Shudong Wang,Shanchen Pang,Xiaodong Tan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jcim.4c02276
摘要

Accurately identifying new therapeutic uses for drugs is essential to advancing pharmaceutical research and development. Graph inference techniques have shown great promise in predicting drug–disease associations, offering both high convergence accuracy and efficiency. However, most existing methods fail to sufficiently address the issue of numerous missing information in drug–disease association networks. Moreover, existing methods are often constrained by local or single-directional reasoning. To overcome these limitations, we propose a novel approach, truncated arctangent rank minimization and double-strategy neighborhood constraint graph inference (TARMDNGI), for drug–disease association prediction. First, we calculate Gaussian kernel and Laplace kernel similarities for both drugs and diseases, which are then integrated using nonlinear fusion techniques. We introduce a new matrix completion technique, referred to as TARM. TARM takes the adjacency matrix of drug–disease heterogeneous networks as the target matrix and enhances the robustness and formability of the edges of DDA networks by truncated arctangent rank minimization. Additionally, we propose a double-strategy neighborhood constrained graph inference method to predict drug–disease associations. This technique focuses on the neighboring nodes of drugs and diseases, filtering out potential noise from more distant nodes. Furthermore, the DNGI method employs both top-down and bottom-up strategies to infer associations using the entire drug–disease heterogeneous network. The synergy of the dual strategies can enhance the comprehensive processing of complex structures and cross-domain associations in heterogeneous graphs, ensuring that the rich information in the network is fully utilized. Experimental results consistently demonstrate that TARMDNGI outperforms state-of-the-art models across two drug–disease datasets, one lncRNA-disease dataset, and one microbe-disease dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林黛玉发布了新的文献求助10
刚刚
刚刚
叮叮当当完成签到,获得积分10
1秒前
dtjvb发布了新的文献求助10
1秒前
鱿鱼完成签到,获得积分10
1秒前
脑洞疼应助Rencal采纳,获得10
2秒前
2秒前
淡定的忆山完成签到 ,获得积分10
3秒前
3秒前
Hello应助缥缈的闭月采纳,获得30
4秒前
4秒前
DDDD源发布了新的文献求助10
4秒前
Jasper应助nron采纳,获得10
4秒前
JamesPei应助hdbys采纳,获得10
5秒前
5秒前
6秒前
绕地球3圈发布了新的文献求助10
6秒前
newman完成签到,获得积分10
6秒前
10发布了新的文献求助10
6秒前
小怪兽发布了新的文献求助10
7秒前
雾失楼台完成签到,获得积分10
7秒前
苏杉杉发布了新的文献求助10
8秒前
BINGBING发布了新的文献求助10
8秒前
可爱芷容完成签到,获得积分10
10秒前
落雁发布了新的文献求助10
10秒前
gsgg完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
热血马儿完成签到,获得积分10
12秒前
W1发布了新的文献求助10
13秒前
苹果蜗牛发布了新的文献求助10
13秒前
绕地球3圈完成签到,获得积分10
13秒前
凭栏听雨完成签到,获得积分10
13秒前
SYLH应助dtjvb采纳,获得10
13秒前
酷炫翠桃应助强扭的瓜采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
14秒前
愉快的真应助科研通管家采纳,获得100
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650