亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Truncated Arctangent Rank Minimization and Double-Strategy Neighborhood Constraint Graph Inference for Drug–Disease Association Prediction

推论 图形 缩小 约束(计算机辅助设计) 药品 计算机科学 秩(图论) 反三角函数 联想(心理学) 数学 算法 人工智能 数学优化 组合数学 医学 药理学 心理学 数学分析 几何学 心理治疗师
作者
Tiyao Liu,Shudong Wang,Shanchen Pang,Xiaodong Tan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jcim.4c02276
摘要

Accurately identifying new therapeutic uses for drugs is essential to advancing pharmaceutical research and development. Graph inference techniques have shown great promise in predicting drug–disease associations, offering both high convergence accuracy and efficiency. However, most existing methods fail to sufficiently address the issue of numerous missing information in drug–disease association networks. Moreover, existing methods are often constrained by local or single-directional reasoning. To overcome these limitations, we propose a novel approach, truncated arctangent rank minimization and double-strategy neighborhood constraint graph inference (TARMDNGI), for drug–disease association prediction. First, we calculate Gaussian kernel and Laplace kernel similarities for both drugs and diseases, which are then integrated using nonlinear fusion techniques. We introduce a new matrix completion technique, referred to as TARM. TARM takes the adjacency matrix of drug–disease heterogeneous networks as the target matrix and enhances the robustness and formability of the edges of DDA networks by truncated arctangent rank minimization. Additionally, we propose a double-strategy neighborhood constrained graph inference method to predict drug–disease associations. This technique focuses on the neighboring nodes of drugs and diseases, filtering out potential noise from more distant nodes. Furthermore, the DNGI method employs both top-down and bottom-up strategies to infer associations using the entire drug–disease heterogeneous network. The synergy of the dual strategies can enhance the comprehensive processing of complex structures and cross-domain associations in heterogeneous graphs, ensuring that the rich information in the network is fully utilized. Experimental results consistently demonstrate that TARMDNGI outperforms state-of-the-art models across two drug–disease datasets, one lncRNA-disease dataset, and one microbe-disease dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
45秒前
简单思萱发布了新的文献求助10
51秒前
可爱的函函应助简单思萱采纳,获得10
1分钟前
简单思萱完成签到,获得积分10
1分钟前
冷如松发布了新的文献求助30
1分钟前
冷如松完成签到,获得积分10
1分钟前
研友_892kOL完成签到,获得积分10
2分钟前
十七完成签到,获得积分10
2分钟前
JamesPei应助laa采纳,获得10
2分钟前
博ge完成签到 ,获得积分10
2分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
明月清风完成签到,获得积分10
3分钟前
3分钟前
3分钟前
laa发布了新的文献求助10
4分钟前
4分钟前
4分钟前
吕晓鹏发布了新的文献求助10
4分钟前
左白易发布了新的文献求助10
4分钟前
4分钟前
ResKeZhang发布了新的文献求助10
4分钟前
小鬼完成签到,获得积分10
5分钟前
5分钟前
小鬼发布了新的文献求助30
5分钟前
甲氨蝶呤完成签到,获得积分10
6分钟前
6分钟前
魏白晴完成签到,获得积分10
6分钟前
6分钟前
Criminology34举报量子星尘求助涉嫌违规
6分钟前
球球子完成签到,获得积分10
6分钟前
7分钟前
7分钟前
刘辰完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
天天快乐应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
小东西发布了新的文献求助200
7分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346693
求助须知:如何正确求助?哪些是违规求助? 4481136
关于积分的说明 13947312
捐赠科研通 4379095
什么是DOI,文献DOI怎么找? 2406155
邀请新用户注册赠送积分活动 1398731
关于科研通互助平台的介绍 1371611