Performance of ChatGPT-4o in the diagnostic workup of fever among returning travelers requiring hospitalization: a validation study

医学 医学诊断 金标准(测试) 病历 疟疾 急诊医学 急诊科 鉴别诊断 诊断代码 诊断准确性 儿科 重症监护医学 外科 内科学 放射科 人口 病理 环境卫生 精神科
作者
Dana Yelin,Neta Shirin,Ian A. Harris,Yovel Peretz,Dafna Yahav,Eli Schwartz,Eyal Leshem,Ili Margalit
出处
期刊:Journal of Travel Medicine [Oxford University Press]
标识
DOI:10.1093/jtm/taaf005
摘要

Febrile illness in returned travelers presents a diagnostic challenge in non-endemic settings. Chat generative pretrained transformer (ChatGPT) has the potential to assist in medical tasks, yet its diagnostic performance in clinical settings has rarely been evaluated. We conducted a preliminary validation assessment of ChatGPT-4o's performance in the workup of fever in returning travelers. We retrieved the medical records of returning travelers hospitalized with fever during 2009-2024. The clinical scenarios of these cases at time of presentation to the emergency department were prompted to ChatGPT-4o, using a detailed uniform format. The model was further prompted with four consistent questions concerning the differential diagnosis and recommended workup. To avoid training, we kept the model blinded to the final diagnosis. Our primary outcome was ChatGPT-4o's success rates in predicting the final diagnosis (gold standard) when requested to specify the top 3 differential diagnoses. Secondary outcomes were success rates when prompted to specify the single most likely diagnosis, and all necessary diagnostics. We also assessed ChatGPT-4o as a predicting tool for malaria and qualitatively evaluated its failures. ChatGPT-4o predicted the final diagnosis in 68% (95% CI 59-77%), 78% (95% CI 69-85%), and 83% (95% CI 74-89%) of the 114 cases, when prompted to specify the most likely diagnosis, top three diagnoses, and all possible diagnoses, respectively. ChatGPT-4o showed a sensitivity of 100% (95% CI 93-100%) and a specificity of 94% (95% CI 85-98%) for predicting malaria. The model failed to provide the final diagnosis in 18% (20/114) of cases, primarily by failing to predict globally endemic infections (16/21, 76%). ChatGPT-4o demonstrated high diagnostic accuracy when prompted with real-life scenarios of febrile returning travelers presenting to the emergency department, especially for malaria. Model training is expected to yield an improved performance and facilitate diagnostic decision-making in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2041完成签到,获得积分10
刚刚
1秒前
1秒前
搜集达人应助卡卡采纳,获得10
2秒前
完美世界应助谷粱紫槐采纳,获得10
2秒前
4秒前
轻松不言发布了新的文献求助10
4秒前
4秒前
年轻的怀柔完成签到,获得积分10
6秒前
脑洞疼应助姜怡采纳,获得10
7秒前
7秒前
领导范儿应助焦头鹅采纳,获得10
8秒前
喵喵牛完成签到,获得积分10
8秒前
GYJ完成签到 ,获得积分10
9秒前
DoLaso完成签到,获得积分10
10秒前
NexusExplorer应助ttqql采纳,获得10
11秒前
12秒前
棖0921发布了新的文献求助10
13秒前
青禾发布了新的文献求助10
13秒前
科研通AI5应助冷傲的凡波采纳,获得10
13秒前
不秃头完成签到,获得积分10
13秒前
华仔应助半柚采纳,获得10
14秒前
15秒前
distinct发布了新的文献求助10
16秒前
桐桐应助墨川采纳,获得30
16秒前
红叶发布了新的文献求助10
16秒前
浮生完成签到 ,获得积分10
17秒前
高高烨磊完成签到,获得积分10
18秒前
19秒前
简单的碧灵完成签到,获得积分10
20秒前
亲豆丁儿发布了新的文献求助10
21秒前
22秒前
小米完成签到,获得积分10
22秒前
科研通AI5应助半柚采纳,获得10
22秒前
23秒前
陶然共忘机完成签到,获得积分10
23秒前
科研小白完成签到 ,获得积分10
24秒前
ttqql发布了新的文献求助10
24秒前
LGLXQ发布了新的文献求助10
27秒前
FashionBoy应助老木虫采纳,获得10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737792
求助须知:如何正确求助?哪些是违规求助? 3281460
关于积分的说明 10025330
捐赠科研通 2998147
什么是DOI,文献DOI怎么找? 1645122
邀请新用户注册赠送积分活动 782547
科研通“疑难数据库(出版商)”最低求助积分说明 749835