Performance of ChatGPT-4o in the diagnostic workup of fever among returning travelers requiring hospitalization: a validation study

医学 医学诊断 金标准(测试) 病历 疟疾 急诊医学 急诊科 鉴别诊断 诊断代码 诊断准确性 儿科 重症监护医学 外科 内科学 放射科 人口 病理 精神科 环境卫生
作者
Dana Yelin,Neta Shirin,Ian A. Harris,Yovel Peretz,Dafna Yahav,Eli Schwartz,Eyal Leshem,Ili Margalit
出处
期刊:Journal of Travel Medicine [Oxford University Press]
标识
DOI:10.1093/jtm/taaf005
摘要

Febrile illness in returned travelers presents a diagnostic challenge in non-endemic settings. Chat generative pretrained transformer (ChatGPT) has the potential to assist in medical tasks, yet its diagnostic performance in clinical settings has rarely been evaluated. We conducted a preliminary validation assessment of ChatGPT-4o's performance in the workup of fever in returning travelers. We retrieved the medical records of returning travelers hospitalized with fever during 2009-2024. The clinical scenarios of these cases at time of presentation to the emergency department were prompted to ChatGPT-4o, using a detailed uniform format. The model was further prompted with four consistent questions concerning the differential diagnosis and recommended workup. To avoid training, we kept the model blinded to the final diagnosis. Our primary outcome was ChatGPT-4o's success rates in predicting the final diagnosis (gold standard) when requested to specify the top 3 differential diagnoses. Secondary outcomes were success rates when prompted to specify the single most likely diagnosis, and all necessary diagnostics. We also assessed ChatGPT-4o as a predicting tool for malaria and qualitatively evaluated its failures. ChatGPT-4o predicted the final diagnosis in 68% (95% CI 59-77%), 78% (95% CI 69-85%), and 83% (95% CI 74-89%) of the 114 cases, when prompted to specify the most likely diagnosis, top three diagnoses, and all possible diagnoses, respectively. ChatGPT-4o showed a sensitivity of 100% (95% CI 93-100%) and a specificity of 94% (95% CI 85-98%) for predicting malaria. The model failed to provide the final diagnosis in 18% (20/114) of cases, primarily by failing to predict globally endemic infections (16/21, 76%). ChatGPT-4o demonstrated high diagnostic accuracy when prompted with real-life scenarios of febrile returning travelers presenting to the emergency department, especially for malaria. Model training is expected to yield an improved performance and facilitate diagnostic decision-making in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助鲈鱼采纳,获得10
1秒前
1秒前
2秒前
孔鹏飞发布了新的文献求助10
2秒前
生动的战斗机完成签到,获得积分10
2秒前
感动芷珊发布了新的文献求助10
3秒前
lwz完成签到,获得积分10
4秒前
坦率的文龙完成签到,获得积分10
4秒前
孙元发布了新的文献求助10
4秒前
5秒前
卷心菜完成签到 ,获得积分10
5秒前
bkagyin应助chencchen采纳,获得10
5秒前
Alice完成签到,获得积分20
5秒前
研友_西门孤晴完成签到,获得积分0
5秒前
一个果儿应助俭朴冰姬采纳,获得30
6秒前
舒适香露完成签到,获得积分10
6秒前
所所应助Ll采纳,获得10
6秒前
迟早是个小富婆关注了科研通微信公众号
6秒前
不冬眠发布了新的文献求助10
7秒前
Criminology34应助骆驼翔子采纳,获得10
7秒前
充电宝应助马晓玲采纳,获得10
7秒前
7秒前
8秒前
岭下移风革俗完成签到,获得积分10
8秒前
8秒前
陈秀娟完成签到,获得积分10
8秒前
hanlin完成签到,获得积分10
8秒前
小黑仙儿完成签到,获得积分10
9秒前
唠嗑在呐发布了新的文献求助10
9秒前
王王旺发布了新的文献求助10
9秒前
晓晓完成签到,获得积分10
10秒前
王硕硕完成签到,获得积分10
10秒前
cwnboy2008发布了新的文献求助10
10秒前
nkuhao完成签到,获得积分10
10秒前
昏睡的柜子完成签到,获得积分10
10秒前
ysy完成签到,获得积分10
10秒前
文文完成签到,获得积分10
11秒前
弱水发布了新的文献求助20
11秒前
smileriver完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612427
求助须知:如何正确求助?哪些是违规求助? 4696552
关于积分的说明 14893385
捐赠科研通 4733235
什么是DOI,文献DOI怎么找? 2546401
邀请新用户注册赠送积分活动 1510561
关于科研通互助平台的介绍 1473423