Dose-Weighted Network Pharmacology: Evaluating Traditional Chinese Medicine Formulations for Lumbar Disc Herniation

医学 中医药 腰椎间盘突出症 药理学 传统医学 腰椎 外科 替代医学 病理
作者
C. Zhou,Ting Xiang,Yu Yu,Hongzhong Ma,Ce Liu,Feng Yang,Lixue Yang
出处
期刊:Journal of Inflammation Research [Dove Medical Press]
卷期号:Volume 18: 1281-1300
标识
DOI:10.2147/jir.s496124
摘要

Lumbar disc herniation (LDH) significantly impacts individuals, particularly those aged 40-45. Traditional Chinese Medicine (TCM) formulations such as Taohong Siwu Decoction (TSD), Yaotong Jizheng Decoction (YJD), and Panlong Qi Tablet (PQT) are widely used for treatment. This study introduces dose-weighted network pharmacology, a novel approach that incorporates drug dosage as a quantitative factor into network analysis to evaluate better and compare the therapeutic potential of TCM formulations. This study combines drug dosage with the PPI network to propose a theoretical algorithm for comparing the therapeutic efficacy of different traditional Chinese medicine formulations. The VIKOR method was used to assess the importance of therapeutic targets, with weights assigned based on both drug and disease perspectives. TSD, YJD, and PQT were evaluated in animal experiments, and the algorithm's feasibility was validated through GO and KEGG pathway analysis, Thermal Hyperalgesia Test, H&E staining, Western blotting (WB), RT-PCR, and ELISA assays. The computational model indicated that YJD and PQT had higher predicted efficacy compared to TSD. These predictions were confirmed in animal studies, where YJD demonstrated the greatest reduction in thermal hyperalgesia and the most significant decrease in inflammatory markers, surpassing both TSD and PQT. GO and KEGG pathway analyses highlighted key pathways related to oxidative stress and inflammation, providing mechanistic insights into the effectiveness of the treatments. Incorporating dosage as a reference factor into network pharmacology research proved feasible and effective, emphasizing the importance of precise dosage control in TCM formulations for treating LDH. The new algorithm provided reliable predictions, demonstrating its potential to enhance the design and evaluation of TCM formulations. Future improvements, such as establishing a target acceptance rate database, could further refine the algorithm, expanding its application in personalized medicine and targeted therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助石头采纳,获得10
刚刚
刚刚
moxin完成签到,获得积分10
1秒前
丫丫发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
852应助小花花采纳,获得10
2秒前
2秒前
2秒前
仲夏完成签到,获得积分10
2秒前
FashionBoy应助NXK采纳,获得10
4秒前
马帅雅发布了新的文献求助10
4秒前
与共发布了新的文献求助10
5秒前
whuijuan关注了科研通微信公众号
5秒前
蓝色刀锋发布了新的文献求助10
5秒前
6秒前
6秒前
科目三应助shirley采纳,获得30
6秒前
Dank1ng完成签到 ,获得积分10
6秒前
小马甲应助我爱蓝胖子采纳,获得10
7秒前
jogrgr发布了新的文献求助20
8秒前
HHHH发布了新的文献求助10
8秒前
MMM完成签到 ,获得积分10
8秒前
忽忽完成签到,获得积分10
8秒前
9秒前
adai完成签到,获得积分10
9秒前
卡卡发布了新的文献求助50
9秒前
10秒前
bkagyin应助富贵小粉猪采纳,获得10
10秒前
11秒前
Joyhold发布了新的文献求助10
11秒前
12秒前
xhh发布了新的文献求助10
12秒前
超级的石头完成签到,获得积分10
13秒前
爱科研完成签到,获得积分20
13秒前
13秒前
14秒前
CodeCraft应助jogrgr采纳,获得20
14秒前
研友_LOaaVZ发布了新的文献求助10
14秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391025
求助须知:如何正确求助?哪些是违规求助? 3002329
关于积分的说明 8803309
捐赠科研通 2688943
什么是DOI,文献DOI怎么找? 1472808
科研通“疑难数据库(出版商)”最低求助积分说明 681187
邀请新用户注册赠送积分活动 674001