Enhanced Trimodal Emotion Recognition Using Multibranch Fusion Attention with Epistemic Neural Networks and Fire Hawk Optimization

融合 情绪识别 计算机科学 人工神经网络 认知科学 人工智能 心理学 哲学 语言学
作者
Bangar Raju Cherukuri
出处
期刊:Journal of machine and computing 卷期号:: 058-075
标识
DOI:10.53759/7669/jmc202505005
摘要

Emotions are very crucial for humans as they determine our ways of thinking, our actions, and even how we interrelate with other persons. Recognition of emotions plays a critical role in areas such as interaction between humans and computers, mental disorder detection, and social robotics. Nevertheless, the current emotion recognition systems have issues like noise interference, inadequate feature extraction, and integration of data for the multimodal context that embraces audio, video, and text. To address these issues, this research proposes an "Enhanced Trimodal Emotion Recognition Using Multibranch Fusion Attention with Epistemic Neural Networks and Fire Hawk Optimization." The proposed method begins with modality-specific preprocessing: Natural Language Processing (NLP) for text to address linguistic variations, Relaxed instance Frequency-wise Normalization (RFN) for the audio to minimize distortion of noise’s importance and iterative self-Guided Image Filter (isGIF) for the videos to enhance the image quality and minimize the artifacts. This preprocessing facilitates and optimizes data for feature extracting; an Inception Transformer for capturing the textual contexts; Differentiable Adaptive Short-Time Fourier transform (DA-STFT) to extract the audio's spectral and temporal features; and class attention mechanisms to emphasize important features in the videos. Following that, these features are combined through a Multi-Branch Fusion Attention Network to harmonize all the multifarious modalities into one. The last sanity check occurs through an Epistemic Neural Network (ENN), which tackles issues of uncertainty involved in the last classification, and the Fire Hawk algorithm is used to enhance the emotion recognition capabilities of the framework. Finally the proposed approach attains 99.5% accuracy with low computational time. Thus, the proposed method addresses important shortcomings of the systems developed previously and can be regarded as a contribution to the development of the multimodal emotion recognition field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助02采纳,获得10
刚刚
4秒前
天天快乐应助Crazylittleape采纳,获得10
5秒前
英姑应助米娅采纳,获得20
8秒前
杜松树发布了新的文献求助10
8秒前
君迁子发布了新的文献求助10
12秒前
Muxi完成签到,获得积分20
14秒前
飘逸问兰完成签到,获得积分10
14秒前
14秒前
15秒前
小蘑菇应助迷人的冰安采纳,获得10
15秒前
机智向松发布了新的文献求助20
17秒前
夏筱应助Muxi采纳,获得10
17秒前
要开心发布了新的文献求助10
17秒前
牟宸锐完成签到,获得积分10
18秒前
虚拟的落雁完成签到,获得积分10
19秒前
02发布了新的文献求助10
20秒前
希望天下0贩的0应助pumpkin采纳,获得10
21秒前
贤惠的豌豆关注了科研通微信公众号
21秒前
orixero应助大胆的钢笔采纳,获得10
22秒前
散逸层梦游应助李剑鸿采纳,获得50
22秒前
小蘑菇应助Nox采纳,获得10
24秒前
SciGPT应助要开心采纳,获得10
24秒前
25秒前
xinlei2023完成签到,获得积分10
25秒前
29秒前
JamesPei应助苗苗会喵喵采纳,获得10
30秒前
欣喜的莆完成签到 ,获得积分10
31秒前
郝志鹏发布了新的文献求助10
31秒前
大模型应助耍酷蛋挞采纳,获得10
33秒前
33秒前
汉堡包应助君迁子采纳,获得10
33秒前
34秒前
苗条山灵发布了新的文献求助10
36秒前
37秒前
斯文败类应助健壮的访曼采纳,获得10
38秒前
38秒前
杜松树完成签到,获得积分10
38秒前
Nox发布了新的文献求助10
38秒前
李思发布了新的文献求助10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309767
求助须知:如何正确求助?哪些是违规求助? 2943014
关于积分的说明 8512004
捐赠科研通 2618059
什么是DOI,文献DOI怎么找? 1430795
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649468