Enhanced Trimodal Emotion Recognition Using Multibranch Fusion Attention with Epistemic Neural Networks and Fire Hawk Optimization

融合 情绪识别 计算机科学 人工神经网络 认知科学 人工智能 心理学 哲学 语言学
作者
Bangar Raju Cherukuri
出处
期刊:Journal of machine and computing 卷期号:: 058-075
标识
DOI:10.53759/7669/jmc202505005
摘要

Emotions are very crucial for humans as they determine our ways of thinking, our actions, and even how we interrelate with other persons. Recognition of emotions plays a critical role in areas such as interaction between humans and computers, mental disorder detection, and social robotics. Nevertheless, the current emotion recognition systems have issues like noise interference, inadequate feature extraction, and integration of data for the multimodal context that embraces audio, video, and text. To address these issues, this research proposes an "Enhanced Trimodal Emotion Recognition Using Multibranch Fusion Attention with Epistemic Neural Networks and Fire Hawk Optimization." The proposed method begins with modality-specific preprocessing: Natural Language Processing (NLP) for text to address linguistic variations, Relaxed instance Frequency-wise Normalization (RFN) for the audio to minimize distortion of noise’s importance and iterative self-Guided Image Filter (isGIF) for the videos to enhance the image quality and minimize the artifacts. This preprocessing facilitates and optimizes data for feature extracting; an Inception Transformer for capturing the textual contexts; Differentiable Adaptive Short-Time Fourier transform (DA-STFT) to extract the audio's spectral and temporal features; and class attention mechanisms to emphasize important features in the videos. Following that, these features are combined through a Multi-Branch Fusion Attention Network to harmonize all the multifarious modalities into one. The last sanity check occurs through an Epistemic Neural Network (ENN), which tackles issues of uncertainty involved in the last classification, and the Fire Hawk algorithm is used to enhance the emotion recognition capabilities of the framework. Finally the proposed approach attains 99.5% accuracy with low computational time. Thus, the proposed method addresses important shortcomings of the systems developed previously and can be regarded as a contribution to the development of the multimodal emotion recognition field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
佳言2009完成签到,获得积分10
1秒前
汉堡包应助漂亮的初蓝采纳,获得10
1秒前
hohokuz发布了新的文献求助10
2秒前
莫里完成签到,获得积分10
2秒前
zxz发布了新的文献求助10
2秒前
Luyao完成签到,获得积分10
3秒前
3秒前
3秒前
马甲完成签到,获得积分10
3秒前
科研通AI5应助xdf采纳,获得10
3秒前
周周完成签到,获得积分10
3秒前
Holybot完成签到,获得积分10
3秒前
5秒前
只道寻常完成签到,获得积分10
5秒前
fleee完成签到,获得积分10
5秒前
swsx1317发布了新的文献求助10
5秒前
6秒前
雪白涵山完成签到,获得积分20
6秒前
liao完成签到 ,获得积分10
6秒前
hu970发布了新的文献求助30
6秒前
科研小白发布了新的文献求助20
7秒前
SciGPT应助白小白采纳,获得10
7秒前
shuxi完成签到,获得积分10
8秒前
liuwei发布了新的文献求助10
8秒前
yxf完成签到,获得积分20
8秒前
9秒前
十一完成签到,获得积分10
9秒前
9秒前
穆萝完成签到,获得积分10
9秒前
Jenny应助Eva采纳,获得10
9秒前
bkagyin应助17808352679采纳,获得10
9秒前
俭朴夜雪发布了新的文献求助10
10秒前
10秒前
林上草应助123采纳,获得10
10秒前
科目三应助AoiNG采纳,获得10
10秒前
11秒前
orixero应助雪白涵山采纳,获得20
11秒前
123发布了新的文献求助10
12秒前
ajing完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762