清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhanced Trimodal Emotion Recognition Using Multibranch Fusion Attention with Epistemic Neural Networks and Fire Hawk Optimization

融合 情绪识别 计算机科学 人工神经网络 认知科学 人工智能 心理学 哲学 语言学
作者
Bangar Raju Cherukuri
出处
期刊:Journal of machine and computing 卷期号:: 058-075
标识
DOI:10.53759/7669/jmc202505005
摘要

Emotions are very crucial for humans as they determine our ways of thinking, our actions, and even how we interrelate with other persons. Recognition of emotions plays a critical role in areas such as interaction between humans and computers, mental disorder detection, and social robotics. Nevertheless, the current emotion recognition systems have issues like noise interference, inadequate feature extraction, and integration of data for the multimodal context that embraces audio, video, and text. To address these issues, this research proposes an "Enhanced Trimodal Emotion Recognition Using Multibranch Fusion Attention with Epistemic Neural Networks and Fire Hawk Optimization." The proposed method begins with modality-specific preprocessing: Natural Language Processing (NLP) for text to address linguistic variations, Relaxed instance Frequency-wise Normalization (RFN) for the audio to minimize distortion of noise’s importance and iterative self-Guided Image Filter (isGIF) for the videos to enhance the image quality and minimize the artifacts. This preprocessing facilitates and optimizes data for feature extracting; an Inception Transformer for capturing the textual contexts; Differentiable Adaptive Short-Time Fourier transform (DA-STFT) to extract the audio's spectral and temporal features; and class attention mechanisms to emphasize important features in the videos. Following that, these features are combined through a Multi-Branch Fusion Attention Network to harmonize all the multifarious modalities into one. The last sanity check occurs through an Epistemic Neural Network (ENN), which tackles issues of uncertainty involved in the last classification, and the Fire Hawk algorithm is used to enhance the emotion recognition capabilities of the framework. Finally the proposed approach attains 99.5% accuracy with low computational time. Thus, the proposed method addresses important shortcomings of the systems developed previously and can be regarded as a contribution to the development of the multimodal emotion recognition field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十七完成签到 ,获得积分10
5秒前
瀚海的雄狮完成签到,获得积分10
16秒前
温柔的柠檬完成签到 ,获得积分10
1分钟前
1分钟前
AliEmbark发布了新的文献求助10
1分钟前
李健的小迷弟应助he采纳,获得10
1分钟前
王新彤完成签到 ,获得积分10
1分钟前
1分钟前
如意2023完成签到 ,获得积分10
1分钟前
2分钟前
digger2023完成签到 ,获得积分10
2分钟前
lpjianai168完成签到,获得积分10
2分钟前
飞翔的企鹅完成签到,获得积分10
2分钟前
2分钟前
香蕉觅云应助朴素的雨筠采纳,获得10
2分钟前
我不是很帅完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
一天完成签到 ,获得积分10
2分钟前
xdd完成签到 ,获得积分10
3分钟前
汉堡包应助leinei采纳,获得10
3分钟前
王波完成签到 ,获得积分10
3分钟前
如意竺完成签到,获得积分10
4分钟前
zzgpku完成签到,获得积分0
4分钟前
合不着完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助100
4分钟前
Xzx1995完成签到 ,获得积分10
5分钟前
等待夏旋完成签到,获得积分10
5分钟前
5分钟前
外向的芒果完成签到 ,获得积分10
5分钟前
kuyi完成签到 ,获得积分10
5分钟前
自然代亦完成签到 ,获得积分10
5分钟前
不信人间有白头完成签到 ,获得积分10
5分钟前
真的OK完成签到,获得积分10
6分钟前
Bella完成签到 ,获得积分10
6分钟前
zwzw完成签到,获得积分10
6分钟前
cityhunter7777完成签到,获得积分10
6分钟前
朝夕之晖完成签到,获得积分10
6分钟前
CGBIO完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935628
求助须知:如何正确求助?哪些是违规求助? 4202915
关于积分的说明 13059077
捐赠科研通 3979180
什么是DOI,文献DOI怎么找? 2179684
邀请新用户注册赠送积分活动 1195702
关于科研通互助平台的介绍 1107514