亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced Trimodal Emotion Recognition Using Multibranch Fusion Attention with Epistemic Neural Networks and Fire Hawk Optimization

融合 情绪识别 计算机科学 人工神经网络 认知科学 人工智能 心理学 哲学 语言学
作者
Bangar Raju Cherukuri
出处
期刊:Journal of machine and computing 卷期号:: 058-075
标识
DOI:10.53759/7669/jmc202505005
摘要

Emotions are very crucial for humans as they determine our ways of thinking, our actions, and even how we interrelate with other persons. Recognition of emotions plays a critical role in areas such as interaction between humans and computers, mental disorder detection, and social robotics. Nevertheless, the current emotion recognition systems have issues like noise interference, inadequate feature extraction, and integration of data for the multimodal context that embraces audio, video, and text. To address these issues, this research proposes an "Enhanced Trimodal Emotion Recognition Using Multibranch Fusion Attention with Epistemic Neural Networks and Fire Hawk Optimization." The proposed method begins with modality-specific preprocessing: Natural Language Processing (NLP) for text to address linguistic variations, Relaxed instance Frequency-wise Normalization (RFN) for the audio to minimize distortion of noise’s importance and iterative self-Guided Image Filter (isGIF) for the videos to enhance the image quality and minimize the artifacts. This preprocessing facilitates and optimizes data for feature extracting; an Inception Transformer for capturing the textual contexts; Differentiable Adaptive Short-Time Fourier transform (DA-STFT) to extract the audio's spectral and temporal features; and class attention mechanisms to emphasize important features in the videos. Following that, these features are combined through a Multi-Branch Fusion Attention Network to harmonize all the multifarious modalities into one. The last sanity check occurs through an Epistemic Neural Network (ENN), which tackles issues of uncertainty involved in the last classification, and the Fire Hawk algorithm is used to enhance the emotion recognition capabilities of the framework. Finally the proposed approach attains 99.5% accuracy with low computational time. Thus, the proposed method addresses important shortcomings of the systems developed previously and can be regarded as a contribution to the development of the multimodal emotion recognition field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
14秒前
毅毅发布了新的文献求助30
17秒前
42秒前
毅毅完成签到,获得积分10
50秒前
清爽乐菱应助科研通管家采纳,获得30
59秒前
1分钟前
1分钟前
1分钟前
Rondab应助firesquall采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
CMY发布了新的文献求助10
1分钟前
杨涵完成签到 ,获得积分10
1分钟前
2分钟前
RAIN发布了新的文献求助10
2分钟前
2分钟前
海绵宝宝抓水母完成签到,获得积分10
2分钟前
平淡的快乐完成签到,获得积分10
2分钟前
JamesPei应助平淡的快乐采纳,获得10
2分钟前
在水一方应助CMY采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
冬去春来完成签到 ,获得积分10
3分钟前
3分钟前
CMY发布了新的文献求助10
3分钟前
姜忆霜完成签到 ,获得积分10
3分钟前
小蘑菇应助葛力采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
葛力发布了新的文献求助10
4分钟前
彩色的紫丝完成签到 ,获得积分10
4分钟前
fangyifang完成签到,获得积分10
4分钟前
xxx完成签到,获得积分20
4分钟前
4分钟前
4分钟前
xxx发布了新的文献求助20
4分钟前
Tethys完成签到 ,获得积分10
4分钟前
4分钟前
Akim应助大方研究生采纳,获得10
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008109
求助须知:如何正确求助?哪些是违规求助? 3547893
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188