Multiscale Sparse Cross-Attention Network for Remote Sensing Scene Classification

计算机科学 特征(语言学) 模式识别(心理学) 人工智能 突出 块(置换群论) 特征提取 稀疏逼近 保险丝(电气) 过程(计算) 数据挖掘 机器学习 数学 哲学 语言学 几何学 电气工程 工程类 操作系统
作者
Jingjing Ma,Wei Jiang,Xu Tang,Xiangrong Zhang,Fang Liu,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tgrs.2025.3525582
摘要

Remote sensing (RS) scene classification (RSSC) is a prominent research topic in the RS community. Multilevel feature fusion is an important way of addressing RS scene classification, and many methods have been proposed in recent years. Although they succeed, current methods can still be improved, particularly in distinguishing the contributions of different multilevel features and fully and effectively fusing them. To address the above issues and fully exploit the potential of multilevel features for RS scene classification tasks, we propose a new model named multiscale sparse cross-attention network (MSCN). It not only focuses on the effectiveness of feature learning but also emphasizes the rationality of feature fusion. In detail, MSCN first extracts multilevel features using a pre-trained ResNet50. Also, these features are divided into high- and low-level features according to the clues they involved. Then, a multiscale sparse cross-attention (MSC) module is developed to cross-fuse the high-level feature with various low-level features, thereby effectively mining helpful information from multilevel features. In the fusion process, MSC not only explores the multiscale messages in RS scenes but also mitigates the negative impact of irrelevant information by employing sparse operations. Third, a group convolutional block attention module (CBAM) enhancer (GCE) is presented to enhance the representation of classification features. GCE detects local salient information within classification features using grouped CBAM and further enhances crucial details by readjusting the CBAM attention weights. This way, the classification features' discrimination can be improved. We conducted extensive experiments on three public RS scene classification datasets. The exceptional experimental results indicate that our proposed MSCN achieves superior classification accuracy, surpassing many existing methods. Our source codes are available at https://github.com/TangXu-Group/Remote-Sensing-Images-Classification/tree/main/MSCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研战士完成签到,获得积分10
1秒前
悦yue完成签到,获得积分10
1秒前
隐形曼青应助ganen采纳,获得10
1秒前
dfghjkl完成签到 ,获得积分10
3秒前
爱听歌半山完成签到,获得积分10
9秒前
caojiarong完成签到,获得积分10
13秒前
小海绵完成签到,获得积分10
16秒前
caojiarong发布了新的文献求助10
18秒前
18秒前
巷陌完成签到 ,获得积分10
19秒前
shz8012发布了新的文献求助30
19秒前
20秒前
harvey完成签到,获得积分20
20秒前
失眠的水云完成签到,获得积分10
21秒前
22秒前
huohuo完成签到,获得积分10
22秒前
WangXiaoze发布了新的文献求助10
23秒前
25秒前
ran发布了新的文献求助10
25秒前
茗茗关注了科研通微信公众号
25秒前
舒适智宸发布了新的文献求助30
29秒前
小苏完成签到,获得积分10
30秒前
ww完成签到,获得积分20
30秒前
32秒前
shz8012完成签到,获得积分10
33秒前
HYX完成签到,获得积分10
34秒前
猪猪hero发布了新的文献求助10
36秒前
乐乐应助WangXiaoze采纳,获得10
36秒前
研友_VZG7GZ应助ran采纳,获得10
36秒前
燕燕于飞发布了新的文献求助10
37秒前
晨光中完成签到,获得积分10
39秒前
太阳完成签到,获得积分10
40秒前
max完成签到,获得积分10
41秒前
茗茗发布了新的文献求助10
43秒前
43秒前
慕青应助caojiarong采纳,获得10
44秒前
49秒前
猪猪hero应助繁星与北斗采纳,获得10
50秒前
ky完成签到,获得积分10
51秒前
abc完成签到 ,获得积分10
53秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281158
关于积分的说明 10023202
捐赠科研通 2997821
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731