AI model for automatic 3D reconstruction of ossicular chain and bony labyrinth from High-Resolution CT

高分辨率 分辨率(逻辑) 解剖 计算机断层摄影术 地质学 口腔正畸科 计算机科学 医学 人工智能 放射科 遥感
作者
Mingwei Xie,Haonan Wang,Zehong Yang,Ming Gao,Guangzi Shi,Xing-Yun Liao,Zhuojing Luo,Xiaomeng Li,Jun Shen
标识
DOI:10.1093/radadv/umaf004
摘要

Abstract Background Three-dimensional (3D) reconstruction of ossicular chain and bony labyrinth based on temporal bone high resolution computed tomography (HRCT) is useful for diagnosis and treatment guidance of middle and inner ear diseases. However, these structures are small and irregular, making manual reconstruction time-consuming. Purpose To develop and validate an artificial intelligence (AI) model based on semi-supervised learning for automated 3D reconstruction of ossicular chain and bony labyrinth on HRCT images. Methods HRCT images from 304 ears of consecutive 152 patients retrospectively collected from a single center were randomly divided into training (246 ears), validation (28 ears) and internal test (30 ears) cohorts for model development. A novel semi-supervised ear bone segmentation framework was used to train the AI model, and its performance was evaluated by Dice similarity coefficients. The trained algorithm was applied to a temporally independent test dataset of 30 ears of 15 patients from the same center for comparison with manual 3D reconstruction for processing time, target volume and visual assessment of segmentation. Results The AI model demonstrated a Dice score of 0.948 (95% CI: 0.940, 0.955) for the internal and 0.979 (95% CI: 0.973, 0.986) for the temporally independent test sets. In the latter dataset, the AI model required 2% or less processing time of manual 3D reconstruction for each ear (17.7 seconds ± 10.1 vs 1080.5 seconds ± 149.8; P < .001), and had an accuracy comparable to human experts in the volume and visual assessment of segmentation targets (P = .237-1.000). In a subgroup analysis, the model achieved accurate segmentation (Dice scores of 0.98-0.99) across various diseases (e.g. otitis media, mastoiditis, otosclerosis, middle and inner ear malformations, and Ménière’s disease). Conclusion The AI model enables robust, efficient and accurate 3D reconstruction for the small structures such as ossicular chain and bony labyrinth on HRCT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyq617569158完成签到,获得积分20
1秒前
liu发布了新的文献求助10
1秒前
heilong完成签到,获得积分10
3秒前
5秒前
6秒前
赘婿应助liu采纳,获得10
9秒前
zcs完成签到,获得积分10
9秒前
拾起完成签到,获得积分10
9秒前
bailin发布了新的文献求助10
11秒前
轵关宣方发布了新的文献求助10
11秒前
14秒前
15秒前
Baiyu完成签到,获得积分10
16秒前
17秒前
So发布了新的文献求助10
17秒前
17秒前
BowieHuang应助拾起采纳,获得10
17秒前
18秒前
爬不起来发布了新的文献求助10
19秒前
科研通AI2S应助Lynn采纳,获得10
20秒前
歇洛克完成签到,获得积分20
20秒前
20秒前
大意的语琴发布了新的文献求助100
21秒前
轵关宣方完成签到,获得积分10
22秒前
bailin完成签到,获得积分10
22秒前
星月发布了新的文献求助10
22秒前
if完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
JERRY完成签到 ,获得积分10
27秒前
27秒前
28秒前
29秒前
painting完成签到,获得积分10
31秒前
乐乐应助小乐采纳,获得10
31秒前
33秒前
33秒前
34秒前
35秒前
35秒前
情怀应助qaz采纳,获得10
36秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580624
求助须知:如何正确求助?哪些是违规求助? 4665515
关于积分的说明 14756188
捐赠科研通 4606909
什么是DOI,文献DOI怎么找? 2528096
邀请新用户注册赠送积分活动 1497399
关于科研通互助平台的介绍 1466355