AI model for automatic 3D reconstruction of ossicular chain and bony labyrinth from High-Resolution CT

高分辨率 分辨率(逻辑) 解剖 计算机断层摄影术 地质学 口腔正畸科 计算机科学 医学 人工智能 放射科 遥感
作者
Mingwei Xie,Haonan Wang,Zehong Yang,Ming Gao,Guangzi Shi,Xing-Yun Liao,Zhuojing Luo,Xiaomeng Li,Jun Shen
标识
DOI:10.1093/radadv/umaf004
摘要

Abstract Background Three-dimensional (3D) reconstruction of ossicular chain and bony labyrinth based on temporal bone high resolution computed tomography (HRCT) is useful for diagnosis and treatment guidance of middle and inner ear diseases. However, these structures are small and irregular, making manual reconstruction time-consuming. Purpose To develop and validate an artificial intelligence (AI) model based on semi-supervised learning for automated 3D reconstruction of ossicular chain and bony labyrinth on HRCT images. Methods HRCT images from 304 ears of consecutive 152 patients retrospectively collected from a single center were randomly divided into training (246 ears), validation (28 ears) and internal test (30 ears) cohorts for model development. A novel semi-supervised ear bone segmentation framework was used to train the AI model, and its performance was evaluated by Dice similarity coefficients. The trained algorithm was applied to a temporally independent test dataset of 30 ears of 15 patients from the same center for comparison with manual 3D reconstruction for processing time, target volume and visual assessment of segmentation. Results The AI model demonstrated a Dice score of 0.948 (95% CI: 0.940, 0.955) for the internal and 0.979 (95% CI: 0.973, 0.986) for the temporally independent test sets. In the latter dataset, the AI model required 2% or less processing time of manual 3D reconstruction for each ear (17.7 seconds ± 10.1 vs 1080.5 seconds ± 149.8; P < .001), and had an accuracy comparable to human experts in the volume and visual assessment of segmentation targets (P = .237-1.000). In a subgroup analysis, the model achieved accurate segmentation (Dice scores of 0.98-0.99) across various diseases (e.g. otitis media, mastoiditis, otosclerosis, middle and inner ear malformations, and Ménière’s disease). Conclusion The AI model enables robust, efficient and accurate 3D reconstruction for the small structures such as ossicular chain and bony labyrinth on HRCT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ayanami发布了新的文献求助10
2秒前
兆锦momo完成签到,获得积分10
3秒前
aa完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
科研废物发布了新的文献求助10
4秒前
希望天下0贩的0应助Jenny采纳,获得10
5秒前
5秒前
5秒前
Yezang18完成签到,获得积分10
6秒前
今后应助Ayanami采纳,获得10
6秒前
6秒前
样样子完成签到,获得积分10
6秒前
fry应助ipcy采纳,获得30
7秒前
zj完成签到,获得积分10
7秒前
刻苦的寒凝完成签到,获得积分10
7秒前
jianning完成签到,获得积分10
7秒前
小马甲应助ASA采纳,获得30
7秒前
8秒前
白鸽发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
领导范儿应助Sevi采纳,获得10
10秒前
李健的小迷弟应助Sevi采纳,获得10
10秒前
英俊的铭应助Sevi采纳,获得10
10秒前
苹果花发布了新的文献求助10
11秒前
11秒前
12秒前
duoduo应助laity采纳,获得10
12秒前
Ywffffff发布了新的文献求助10
13秒前
ding应助蘑菇采纳,获得10
13秒前
科研通AI5应助Clark采纳,获得10
13秒前
老古董完成签到,获得积分20
14秒前
明芬发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
cz发布了新的文献求助10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490111
求助须知:如何正确求助?哪些是违规求助? 3077192
关于积分的说明 9147808
捐赠科研通 2769300
什么是DOI,文献DOI怎么找? 1519686
邀请新用户注册赠送积分活动 704184
科研通“疑难数据库(出版商)”最低求助积分说明 702113