亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting patients with septic shock and sepsis through analyzing whole-blood expression of NK cell-related hub genes using an advanced machine learning framework

感染性休克 败血症 基因 基因表达 计算生物学 休克(循环) 医学 计算机科学 免疫学 生物信息学 生物 内科学 遗传学
作者
Chao Du,Stephanie Tan,Heng‐Fu Bu,Saravanan Subramanian,Hua Geng,Xiao Wang,Hehuang Xie,Xiaowei Wu,Tingfa Zhou,Ruijin Liu,Zhen Xu,Lei Zhu,Xiao‐Di Tan
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1493895
摘要

Background Sepsis is a life-threatening condition that causes millions of deaths globally each year. The need for biomarkers to predict the progression of sepsis to septic shock remains critical, with rapid, reliable methods still lacking. Transcriptomics data has recently emerged as a valuable resource for disease phenotyping and endotyping, making it a promising tool for predicting disease stages. Therefore, we aimed to establish an advanced machine learning framework to predict sepsis and septic shock using transcriptomics datasets with rapid turnaround methods. Methods We retrieved four NCBI GEO transcriptomics datasets previously generated from peripheral blood samples of healthy individuals and patients with sepsis and septic shock. The datasets were processed for bioinformatic analysis and supplemented with a series of bench experiments, leading to the identification of a hub gene panel relevant to sepsis and septic shock. The hub gene panel was used to establish a novel prediction model to distinguish sepsis from septic shock through a multistage machine learning pipeline, incorporating linear discriminant analysis, risk score analysis, and ensemble method combined with Least Absolute Shrinkage and Selection Operator analysis. Finally, we validated the prediction model with the hub gene dataset generated by RT-qPCR using peripheral blood samples from newly recruited patients. Results Our analysis led to identify six hub genes ( GZMB, PRF1, KLRD1, SH2D1A, LCK , and CD247 ) which are related to NK cell cytotoxicity and septic shock, collectively termed 6-HubG ss . Using this panel, we created SepxFindeR, a machine learning model that demonstrated high accuracy in predicting sepsis and septic shock and distinguishing septic shock from sepsis in a cross-database context. Remarkably, the SepxFindeR model proved compatible with RT-qPCR datasets based on the 6-HubG ss panel, facilitating the identification of newly recruited patients with sepsis and septic shock. Conclusions Our bioinformatic approach led to the discovery of the 6-HubGss biomarker panel and the development of the SepxFindeR machine learning model, enabling accurate prediction of septic shock and distinction from sepsis with rapid processing capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arsenal完成签到 ,获得积分10
12秒前
星辰大海应助哈哈哈哈哈采纳,获得10
31秒前
小五完成签到,获得积分10
36秒前
jzz应助科研通管家采纳,获得10
40秒前
Orange应助科研通管家采纳,获得10
40秒前
小二郎应助科研通管家采纳,获得10
40秒前
量子星尘发布了新的文献求助10
49秒前
1分钟前
如意枫叶发布了新的文献求助10
2分钟前
呆呆不呆Zz完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
GZ完成签到 ,获得积分10
3分钟前
3分钟前
hugdoggy完成签到 ,获得积分10
4分钟前
呼延夜玉发布了新的文献求助10
4分钟前
Eatanicecube完成签到,获得积分10
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
Hayat应助科研通管家采纳,获得10
4分钟前
4分钟前
自然芷文完成签到,获得积分10
4分钟前
小二郎应助自然芷文采纳,获得10
4分钟前
雨竹完成签到,获得积分10
5分钟前
洛阳发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
呼延夜玉完成签到 ,获得积分10
5分钟前
ww发布了新的文献求助10
6分钟前
lixuebin完成签到 ,获得积分10
6分钟前
CAOHOU应助xingsixs采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
ww发布了新的文献求助100
6分钟前
7分钟前
ww发布了新的文献求助10
7分钟前
顺利的尔芙完成签到,获得积分10
7分钟前
毓雅完成签到,获得积分10
7分钟前
小马甲应助顺利的尔芙采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015088
求助须知:如何正确求助?哪些是违规求助? 3555039
关于积分的说明 11317842
捐赠科研通 3288546
什么是DOI,文献DOI怎么找? 1812266
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983