Predicting patients with septic shock and sepsis through analyzing whole-blood expression of NK cell-related hub genes using an advanced machine learning framework

感染性休克 败血症 基因 基因表达 计算生物学 休克(循环) 医学 计算机科学 免疫学 生物信息学 生物 内科学 遗传学
作者
Chao Du,Stephanie Tan,Heng‐Fu Bu,Saravanan Subramanian,Hua Geng,Xiao Wang,Hehuang Xie,Xiaowei Wu,Tingfa Zhou,Ruijin Liu,Zhen Xu,Lei Zhu,Xiao‐Di Tan
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1493895
摘要

Background Sepsis is a life-threatening condition that causes millions of deaths globally each year. The need for biomarkers to predict the progression of sepsis to septic shock remains critical, with rapid, reliable methods still lacking. Transcriptomics data has recently emerged as a valuable resource for disease phenotyping and endotyping, making it a promising tool for predicting disease stages. Therefore, we aimed to establish an advanced machine learning framework to predict sepsis and septic shock using transcriptomics datasets with rapid turnaround methods. Methods We retrieved four NCBI GEO transcriptomics datasets previously generated from peripheral blood samples of healthy individuals and patients with sepsis and septic shock. The datasets were processed for bioinformatic analysis and supplemented with a series of bench experiments, leading to the identification of a hub gene panel relevant to sepsis and septic shock. The hub gene panel was used to establish a novel prediction model to distinguish sepsis from septic shock through a multistage machine learning pipeline, incorporating linear discriminant analysis, risk score analysis, and ensemble method combined with Least Absolute Shrinkage and Selection Operator analysis. Finally, we validated the prediction model with the hub gene dataset generated by RT-qPCR using peripheral blood samples from newly recruited patients. Results Our analysis led to identify six hub genes ( GZMB, PRF1, KLRD1, SH2D1A, LCK , and CD247 ) which are related to NK cell cytotoxicity and septic shock, collectively termed 6-HubG ss . Using this panel, we created SepxFindeR, a machine learning model that demonstrated high accuracy in predicting sepsis and septic shock and distinguishing septic shock from sepsis in a cross-database context. Remarkably, the SepxFindeR model proved compatible with RT-qPCR datasets based on the 6-HubG ss panel, facilitating the identification of newly recruited patients with sepsis and septic shock. Conclusions Our bioinformatic approach led to the discovery of the 6-HubGss biomarker panel and the development of the SepxFindeR machine learning model, enabling accurate prediction of septic shock and distinction from sepsis with rapid processing capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独天薇完成签到,获得积分10
1秒前
加菲丰丰完成签到,获得积分0
2秒前
HugginBearOuO发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
正己烷完成签到 ,获得积分10
4秒前
夜盏丿完成签到,获得积分10
5秒前
月下发布了新的文献求助10
6秒前
syanxxxx发布了新的文献求助10
6秒前
慕青应助Sandy采纳,获得10
8秒前
Rimsha完成签到,获得积分10
8秒前
赘婿应助tigeryao采纳,获得10
9秒前
woyaojiayou完成签到,获得积分10
9秒前
共享精神应助满意霆采纳,获得10
10秒前
曲沅完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
qianlu完成签到 ,获得积分10
17秒前
18秒前
支援未来发布了新的文献求助10
18秒前
404发布了新的文献求助30
18秒前
光亮的元容完成签到,获得积分10
20秒前
曲沅发布了新的文献求助30
21秒前
麻辣小龙虾完成签到,获得积分10
21秒前
黄筱筱应助月下采纳,获得10
22秒前
24秒前
27秒前
dao发布了新的文献求助10
29秒前
30秒前
30秒前
30秒前
30秒前
30秒前
Lucas应助科研通管家采纳,获得10
30秒前
30秒前
思源应助科研通管家采纳,获得30
30秒前
无花果应助科研通管家采纳,获得10
30秒前
CodeCraft应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4912095
求助须知:如何正确求助?哪些是违规求助? 4187304
关于积分的说明 13003664
捐赠科研通 3955373
什么是DOI,文献DOI怎么找? 2168696
邀请新用户注册赠送积分活动 1187211
关于科研通互助平台的介绍 1094459