Predicting patients with septic shock and sepsis through analyzing whole-blood expression of NK cell-related hub genes using an advanced machine learning framework

感染性休克 败血症 基因 基因表达 计算生物学 休克(循环) 医学 计算机科学 免疫学 生物信息学 生物 内科学 遗传学
作者
Chao Du,Stephanie Tan,Heng‐Fu Bu,Saravanan Subramanian,Hua Geng,Xiao Wang,Hehuang Xie,Xiaowei Wu,Tingfa Zhou,Ruijin Liu,Zhen Xu,Lei Zhu,Xiao‐Di Tan
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1493895
摘要

Background Sepsis is a life-threatening condition that causes millions of deaths globally each year. The need for biomarkers to predict the progression of sepsis to septic shock remains critical, with rapid, reliable methods still lacking. Transcriptomics data has recently emerged as a valuable resource for disease phenotyping and endotyping, making it a promising tool for predicting disease stages. Therefore, we aimed to establish an advanced machine learning framework to predict sepsis and septic shock using transcriptomics datasets with rapid turnaround methods. Methods We retrieved four NCBI GEO transcriptomics datasets previously generated from peripheral blood samples of healthy individuals and patients with sepsis and septic shock. The datasets were processed for bioinformatic analysis and supplemented with a series of bench experiments, leading to the identification of a hub gene panel relevant to sepsis and septic shock. The hub gene panel was used to establish a novel prediction model to distinguish sepsis from septic shock through a multistage machine learning pipeline, incorporating linear discriminant analysis, risk score analysis, and ensemble method combined with Least Absolute Shrinkage and Selection Operator analysis. Finally, we validated the prediction model with the hub gene dataset generated by RT-qPCR using peripheral blood samples from newly recruited patients. Results Our analysis led to identify six hub genes ( GZMB, PRF1, KLRD1, SH2D1A, LCK , and CD247 ) which are related to NK cell cytotoxicity and septic shock, collectively termed 6-HubG ss . Using this panel, we created SepxFindeR, a machine learning model that demonstrated high accuracy in predicting sepsis and septic shock and distinguishing septic shock from sepsis in a cross-database context. Remarkably, the SepxFindeR model proved compatible with RT-qPCR datasets based on the 6-HubG ss panel, facilitating the identification of newly recruited patients with sepsis and septic shock. Conclusions Our bioinformatic approach led to the discovery of the 6-HubGss biomarker panel and the development of the SepxFindeR machine learning model, enabling accurate prediction of septic shock and distinction from sepsis with rapid processing capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuzi发布了新的文献求助10
1秒前
酷波er应助重要灵寒采纳,获得10
1秒前
roundtree完成签到 ,获得积分0
2秒前
量子星尘发布了新的文献求助10
8秒前
机智冥完成签到 ,获得积分10
14秒前
Job完成签到,获得积分10
17秒前
甜心椰奶莓莓完成签到 ,获得积分10
20秒前
xiuxiu125完成签到,获得积分10
21秒前
小坤不慌完成签到 ,获得积分10
21秒前
dejavu完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助20
22秒前
火鸡味锅巴完成签到 ,获得积分10
25秒前
龙弟弟完成签到 ,获得积分10
29秒前
小李子完成签到 ,获得积分10
32秒前
33秒前
35秒前
Jasmineyfz完成签到 ,获得积分10
36秒前
雨安完成签到 ,获得积分10
37秒前
司徒无剑发布了新的文献求助10
38秒前
xu完成签到 ,获得积分10
39秒前
rigelfalcon完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
39秒前
qinghe完成签到 ,获得积分10
41秒前
Silence完成签到,获得积分0
42秒前
司徒无剑完成签到,获得积分10
45秒前
许思真完成签到,获得积分10
46秒前
文献搬运工完成签到 ,获得积分0
49秒前
安然完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
54秒前
少年完成签到 ,获得积分10
54秒前
吧啦哗啦完成签到 ,获得积分10
57秒前
1分钟前
hute完成签到 ,获得积分10
1分钟前
斯文败类应助qaz123采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
稳重母鸡完成签到 ,获得积分10
1分钟前
qaz123发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
qaz123完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573550
求助须知:如何正确求助?哪些是违规求助? 4659634
关于积分的说明 14725019
捐赠科研通 4599518
什么是DOI,文献DOI怎么找? 2524348
邀请新用户注册赠送积分活动 1494762
关于科研通互助平台的介绍 1464845