亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting patients with septic shock and sepsis through analyzing whole-blood expression of NK cell-related hub genes using an advanced machine learning framework

感染性休克 败血症 基因 基因表达 计算生物学 休克(循环) 医学 计算机科学 免疫学 生物信息学 生物 内科学 遗传学
作者
Chao Du,Stephanie Tan,Heng‐Fu Bu,Saravanan Subramanian,Hua Geng,Xiao Wang,Hehuang Xie,Xiaowei Wu,Tingfa Zhou,Ruijin Liu,Zhen Xu,Lei Zhu,Xiao‐Di Tan
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1493895
摘要

Background Sepsis is a life-threatening condition that causes millions of deaths globally each year. The need for biomarkers to predict the progression of sepsis to septic shock remains critical, with rapid, reliable methods still lacking. Transcriptomics data has recently emerged as a valuable resource for disease phenotyping and endotyping, making it a promising tool for predicting disease stages. Therefore, we aimed to establish an advanced machine learning framework to predict sepsis and septic shock using transcriptomics datasets with rapid turnaround methods. Methods We retrieved four NCBI GEO transcriptomics datasets previously generated from peripheral blood samples of healthy individuals and patients with sepsis and septic shock. The datasets were processed for bioinformatic analysis and supplemented with a series of bench experiments, leading to the identification of a hub gene panel relevant to sepsis and septic shock. The hub gene panel was used to establish a novel prediction model to distinguish sepsis from septic shock through a multistage machine learning pipeline, incorporating linear discriminant analysis, risk score analysis, and ensemble method combined with Least Absolute Shrinkage and Selection Operator analysis. Finally, we validated the prediction model with the hub gene dataset generated by RT-qPCR using peripheral blood samples from newly recruited patients. Results Our analysis led to identify six hub genes ( GZMB, PRF1, KLRD1, SH2D1A, LCK , and CD247 ) which are related to NK cell cytotoxicity and septic shock, collectively termed 6-HubG ss . Using this panel, we created SepxFindeR, a machine learning model that demonstrated high accuracy in predicting sepsis and septic shock and distinguishing septic shock from sepsis in a cross-database context. Remarkably, the SepxFindeR model proved compatible with RT-qPCR datasets based on the 6-HubG ss panel, facilitating the identification of newly recruited patients with sepsis and septic shock. Conclusions Our bioinformatic approach led to the discovery of the 6-HubGss biomarker panel and the development of the SepxFindeR machine learning model, enabling accurate prediction of septic shock and distinction from sepsis with rapid processing capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzhou完成签到,获得积分10
1秒前
科研通AI2S应助周文凯采纳,获得10
2秒前
科研通AI2S应助周文凯采纳,获得10
2秒前
海边的棕榈树完成签到,获得积分10
3秒前
4秒前
Qiber完成签到,获得积分10
6秒前
6秒前
蘑菇完成签到 ,获得积分10
7秒前
8秒前
9秒前
唐阳发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
今后应助Aroma采纳,获得10
12秒前
Sunny完成签到 ,获得积分10
12秒前
狂野元枫完成签到 ,获得积分10
13秒前
曾真真幸运完成签到,获得积分10
14秒前
Echo完成签到,获得积分0
15秒前
鳕鱼香丝发布了新的文献求助30
18秒前
脑洞疼应助CLK采纳,获得10
20秒前
青己完成签到 ,获得积分10
21秒前
26秒前
饱满的亦旋完成签到,获得积分10
28秒前
28秒前
30秒前
Antares发布了新的文献求助10
32秒前
34秒前
CLK发布了新的文献求助10
35秒前
eric888发布了新的文献求助30
39秒前
手术刀完成签到 ,获得积分10
41秒前
CLK完成签到,获得积分10
43秒前
王振兴完成签到 ,获得积分10
44秒前
45秒前
48秒前
jason发布了新的文献求助100
50秒前
Akim应助不喜采纳,获得10
52秒前
sakura完成签到,获得积分10
52秒前
shhoing应助科研通管家采纳,获得10
55秒前
科研通AI6应助科研通管家采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538436
求助须知:如何正确求助?哪些是违规求助? 4625561
关于积分的说明 14596443
捐赠科研通 4566152
什么是DOI,文献DOI怎么找? 2503022
邀请新用户注册赠送积分活动 1481293
关于科研通互助平台的介绍 1452577