已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting patients with septic shock and sepsis through analyzing whole-blood expression of NK cell-related hub genes using an advanced machine learning framework

感染性休克 败血症 基因 基因表达 计算生物学 休克(循环) 医学 计算机科学 免疫学 生物信息学 生物 内科学 遗传学
作者
Chao Du,Stephanie Tan,Heng‐Fu Bu,Saravanan Subramanian,Hua Geng,Xiao Wang,Hehuang Xie,Xiaowei Wu,Tingfa Zhou,Ruijin Liu,Zhen Xu,Lei Zhu,Xiao‐Di Tan
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1493895
摘要

Background Sepsis is a life-threatening condition that causes millions of deaths globally each year. The need for biomarkers to predict the progression of sepsis to septic shock remains critical, with rapid, reliable methods still lacking. Transcriptomics data has recently emerged as a valuable resource for disease phenotyping and endotyping, making it a promising tool for predicting disease stages. Therefore, we aimed to establish an advanced machine learning framework to predict sepsis and septic shock using transcriptomics datasets with rapid turnaround methods. Methods We retrieved four NCBI GEO transcriptomics datasets previously generated from peripheral blood samples of healthy individuals and patients with sepsis and septic shock. The datasets were processed for bioinformatic analysis and supplemented with a series of bench experiments, leading to the identification of a hub gene panel relevant to sepsis and septic shock. The hub gene panel was used to establish a novel prediction model to distinguish sepsis from septic shock through a multistage machine learning pipeline, incorporating linear discriminant analysis, risk score analysis, and ensemble method combined with Least Absolute Shrinkage and Selection Operator analysis. Finally, we validated the prediction model with the hub gene dataset generated by RT-qPCR using peripheral blood samples from newly recruited patients. Results Our analysis led to identify six hub genes ( GZMB, PRF1, KLRD1, SH2D1A, LCK , and CD247 ) which are related to NK cell cytotoxicity and septic shock, collectively termed 6-HubG ss . Using this panel, we created SepxFindeR, a machine learning model that demonstrated high accuracy in predicting sepsis and septic shock and distinguishing septic shock from sepsis in a cross-database context. Remarkably, the SepxFindeR model proved compatible with RT-qPCR datasets based on the 6-HubG ss panel, facilitating the identification of newly recruited patients with sepsis and septic shock. Conclusions Our bioinformatic approach led to the discovery of the 6-HubGss biomarker panel and the development of the SepxFindeR machine learning model, enabling accurate prediction of septic shock and distinction from sepsis with rapid processing capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
心信鑫发布了新的文献求助30
3秒前
搜集达人应助xueshudagongzai采纳,获得50
3秒前
无为完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
我是老大应助积极慕晴采纳,获得10
7秒前
Piana发布了新的文献求助10
9秒前
简约完成签到,获得积分10
9秒前
sheishei发布了新的文献求助10
10秒前
1874完成签到 ,获得积分10
11秒前
JTCatherine完成签到,获得积分10
11秒前
TT发布了新的文献求助10
11秒前
12秒前
12秒前
充电宝应助前进大佬采纳,获得10
12秒前
13秒前
我是老大应助昭奚采纳,获得10
14秒前
小十一完成签到 ,获得积分10
16秒前
星辰大海应助ebby采纳,获得10
16秒前
JIA发布了新的文献求助10
17秒前
17秒前
潘名超完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
21秒前
刘齐发布了新的文献求助10
22秒前
薰衣草完成签到,获得积分10
22秒前
科研通AI6应助Didi采纳,获得10
22秒前
22秒前
唐代斯发布了新的文献求助10
23秒前
lei发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469625
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336491
捐赠科研通 4499473
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453640
关于科研通互助平台的介绍 1428133