Machine fault detection model based on MWOA-BiLSTM algorithm

算法 计算机科学 人工智能
作者
Y. Xia,Yang Yang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (11): e0310133-e0310133
标识
DOI:10.1371/journal.pone.0310133
摘要

This paper proposes the Modulated Whale Optimization Algorithm(MWOA), an innovative metaheuristic algorithm derived from the classic WOA and tailored for bionics-inspired optimization. MWOA tackles common optimization problems like local optima and premature convergence using two key methods: shrinking encircling and spiral position updates. In essence, it prevents algorithms from settling for suboptimal solutions too soon, encouraging exploration of a broader solution space before converging, by incorporating cauchy variation and a perturbation term, MWOA achieve optimization over a wide search space. After that, comparisons were conducted between MWOA and seven recently proposed metaheuristics, utilizing the CEC2005 benchmark functions to assess MWOA's optimization performance. Moreover, the Wilcoxon rank sum test is used to verify the effectiveness of the proposed algorithm. Eventually, MWOA was juxtaposed with the BiLSTM classifier and six other meta-heuristics combined with the BiLSTM classifier. The aim was to affirm that MWOA-BiLSTM outperforms its counterparts, showcasing superior performance across crucial metrics such as accuracy, precision, recall, and F1-Score. The study results unequivocally demonstrate that MWOA showcases exceptional optimization capabilities, adeptly striking a harmonious balance between exploration and exploitation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
Hello应助Qianbaor68采纳,获得10
4秒前
zhang001应助继续萌萌采纳,获得10
5秒前
山谷与花发布了新的文献求助10
5秒前
6秒前
wenyue发布了新的文献求助10
6秒前
科研通AI5应助QDE采纳,获得10
7秒前
感动的煜城完成签到,获得积分20
8秒前
彭于晏应助炙热初晴采纳,获得10
9秒前
玊尔发布了新的文献求助10
10秒前
赘婿应助路老师采纳,获得10
11秒前
怕孤单的汉堡应助给好评采纳,获得10
11秒前
Xuan完成签到,获得积分10
11秒前
大个应助典雅白柏采纳,获得10
12秒前
HH发布了新的文献求助20
12秒前
13秒前
正方形的瓜皮完成签到,获得积分10
14秒前
14秒前
16秒前
zm完成签到,获得积分10
16秒前
16秒前
明亮紫易发布了新的文献求助10
18秒前
18秒前
古炮完成签到,获得积分10
18秒前
勤恳达完成签到,获得积分10
18秒前
19秒前
19秒前
金平卢仙发布了新的文献求助10
20秒前
wenyue完成签到,获得积分10
20秒前
diguohu发布了新的文献求助10
20秒前
20秒前
20秒前
Drjason完成签到,获得积分10
20秒前
20秒前
怡然的天思完成签到,获得积分10
21秒前
sophia完成签到 ,获得积分10
21秒前
zho发布了新的文献求助10
21秒前
Owen发布了新的文献求助10
22秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3711192
求助须知:如何正确求助?哪些是违规求助? 3259783
关于积分的说明 9910906
捐赠科研通 2973136
什么是DOI,文献DOI怎么找? 1630383
邀请新用户注册赠送积分活动 773304
科研通“疑难数据库(出版商)”最低求助积分说明 744243