Predicting Elimination of Small-Molecule Drug Half-Life in Pharmacokinetics Using Ensemble and Consensus Machine Learning Methods

均方误差 适用范围 数量结构-活动关系 支持向量机 计算机科学 机器学习 人工智能 梯度升压 交叉验证 药物发现 Boosting(机器学习) 分子描述符 数学 统计 化学 随机森林 生物化学
作者
Jianing Fan,Shaohua Shi,Hong Xiang,Li Fu,Yanjing Duan,Dongsheng Cao,Hongwei Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3080-3092 被引量:15
标识
DOI:10.1021/acs.jcim.3c02030
摘要

Half-life is a significant pharmacokinetic parameter included in the excretion phase of absorption, distribution, metabolism, and excretion. It is one of the key factors for the successful marketing of drug candidates. Therefore, predicting half-life is of great significance in drug design. In this study, we employed eXtreme Gradient Boosting (XGboost), randomForest (RF), gradient boosting machine (GBM), and supporting vector machine (SVM) to build quantitative structure-activity relationship (QSAR) models on 3512 compounds and evaluated model performance by using root-mean-square error (RMSE), R2, and mean absolute error (MAE) metrics and interpreted features by SHapley Additive exPlanation (SHAP). Furthermore, we developed consensus models through integrating four individual models and validated their performance using a Y-randomization test and applicability domain analysis. Finally, matched molecular pair analysis was used to extract the transformation rules. Our results revealed that XGboost outperformed other individual models (RMSE = 0.176, R2 = 0.845, MAE = 0.141). The consensus model integrating all four models continued to enhance prediction performance (RMSE = 0.172, R2 = 0.856, MAE = 0.138). We evaluated the reliability, robustness, and generalization ability via Y-randomization test and applicability domain analysis. Meanwhile, we utilized SHAP to interpret features and employed matched molecular pair analysis to extract chemical transformation rules that provide suggestions for optimizing drug structure. In conclusion, we believe that the consensus model developed in this study serve as a reliable tool to evaluate half-life in drug discovery, and the chemical transformation rules concluded in this study could provide valuable suggestions in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
香蕉觅云应助细心雁兰采纳,获得10
1秒前
3秒前
量子星尘发布了新的文献求助30
3秒前
科研通AI2S应助优美紫槐采纳,获得10
3秒前
肖福艳完成签到,获得积分10
3秒前
今后应助qzliyulin采纳,获得10
4秒前
彬彬有李完成签到,获得积分10
5秒前
WXB完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助唠叨的白曼采纳,获得10
8秒前
小古发布了新的文献求助10
10秒前
有人应助愤怒的绿蕊采纳,获得10
11秒前
古卡可可完成签到 ,获得积分10
11秒前
11秒前
11秒前
帅气凝海发布了新的文献求助30
12秒前
22完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
学术脑袋发布了新的文献求助10
15秒前
lifangqi完成签到,获得积分20
16秒前
17秒前
17秒前
hannah完成签到,获得积分10
18秒前
酸奶烤着吃完成签到,获得积分10
19秒前
Owen应助391X小king采纳,获得10
20秒前
20秒前
小古完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
梦幻发布了新的文献求助10
22秒前
楚博完成签到,获得积分10
22秒前
Am1r完成签到,获得积分10
22秒前
hannah发布了新的文献求助20
23秒前
赵康康发布了新的文献求助10
23秒前
蒸盐粥发布了新的文献求助10
26秒前
26秒前
28秒前
29秒前
实验顺利完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365