Predicting Elimination of Small-Molecule Drug Half-Life in Pharmacokinetics Using Ensemble and Consensus Machine Learning Methods

均方误差 适用范围 数量结构-活动关系 支持向量机 计算机科学 机器学习 人工智能 梯度升压 交叉验证 药物发现 Boosting(机器学习) 分子描述符 数学 统计 化学 随机森林 生物化学
作者
Jianing Fan,Shaohua Shi,Hong Xiang,Li Fu,Yanjing Duan,Dongsheng Cao,Hongwei Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3080-3092 被引量:13
标识
DOI:10.1021/acs.jcim.3c02030
摘要

Half-life is a significant pharmacokinetic parameter included in the excretion phase of absorption, distribution, metabolism, and excretion. It is one of the key factors for the successful marketing of drug candidates. Therefore, predicting half-life is of great significance in drug design. In this study, we employed eXtreme Gradient Boosting (XGboost), randomForest (RF), gradient boosting machine (GBM), and supporting vector machine (SVM) to build quantitative structure-activity relationship (QSAR) models on 3512 compounds and evaluated model performance by using root-mean-square error (RMSE), R2, and mean absolute error (MAE) metrics and interpreted features by SHapley Additive exPlanation (SHAP). Furthermore, we developed consensus models through integrating four individual models and validated their performance using a Y-randomization test and applicability domain analysis. Finally, matched molecular pair analysis was used to extract the transformation rules. Our results revealed that XGboost outperformed other individual models (RMSE = 0.176, R2 = 0.845, MAE = 0.141). The consensus model integrating all four models continued to enhance prediction performance (RMSE = 0.172, R2 = 0.856, MAE = 0.138). We evaluated the reliability, robustness, and generalization ability via Y-randomization test and applicability domain analysis. Meanwhile, we utilized SHAP to interpret features and employed matched molecular pair analysis to extract chemical transformation rules that provide suggestions for optimizing drug structure. In conclusion, we believe that the consensus model developed in this study serve as a reliable tool to evaluate half-life in drug discovery, and the chemical transformation rules concluded in this study could provide valuable suggestions in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助暴富小羊采纳,获得10
1秒前
路瑶瑶完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
小蘑菇应助斑马采纳,获得10
2秒前
2秒前
HXY完成签到 ,获得积分10
2秒前
chenamy完成签到,获得积分10
2秒前
3秒前
张佳宁发布了新的文献求助10
3秒前
3秒前
简默完成签到,获得积分10
3秒前
笨笨千秋完成签到,获得积分10
4秒前
小王完成签到,获得积分10
4秒前
4秒前
WYN发布了新的文献求助10
4秒前
4秒前
5秒前
赘婿应助GOJO采纳,获得10
6秒前
张宜诺发布了新的文献求助10
6秒前
6秒前
小王发布了新的文献求助10
7秒前
不怕困难发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
盆清完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
ayayaya发布了新的文献求助10
10秒前
10秒前
邓佳鑫Alan应助眼睛大芙采纳,获得10
10秒前
凯凯发布了新的文献求助10
10秒前
小米完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616