亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Elimination of Small-Molecule Drug Half-Life in Pharmacokinetics Using Ensemble and Consensus Machine Learning Methods

均方误差 适用范围 数量结构-活动关系 支持向量机 计算机科学 机器学习 人工智能 梯度升压 交叉验证 药物发现 Boosting(机器学习) 分子描述符 数学 统计 化学 随机森林 生物化学
作者
Jianing Fan,Shaohua Shi,Hong Xiang,Li Fu,Yanjing Duan,Dongsheng Cao,Hongwei Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3080-3092 被引量:15
标识
DOI:10.1021/acs.jcim.3c02030
摘要

Half-life is a significant pharmacokinetic parameter included in the excretion phase of absorption, distribution, metabolism, and excretion. It is one of the key factors for the successful marketing of drug candidates. Therefore, predicting half-life is of great significance in drug design. In this study, we employed eXtreme Gradient Boosting (XGboost), randomForest (RF), gradient boosting machine (GBM), and supporting vector machine (SVM) to build quantitative structure-activity relationship (QSAR) models on 3512 compounds and evaluated model performance by using root-mean-square error (RMSE), R2, and mean absolute error (MAE) metrics and interpreted features by SHapley Additive exPlanation (SHAP). Furthermore, we developed consensus models through integrating four individual models and validated their performance using a Y-randomization test and applicability domain analysis. Finally, matched molecular pair analysis was used to extract the transformation rules. Our results revealed that XGboost outperformed other individual models (RMSE = 0.176, R2 = 0.845, MAE = 0.141). The consensus model integrating all four models continued to enhance prediction performance (RMSE = 0.172, R2 = 0.856, MAE = 0.138). We evaluated the reliability, robustness, and generalization ability via Y-randomization test and applicability domain analysis. Meanwhile, we utilized SHAP to interpret features and employed matched molecular pair analysis to extract chemical transformation rules that provide suggestions for optimizing drug structure. In conclusion, we believe that the consensus model developed in this study serve as a reliable tool to evaluate half-life in drug discovery, and the chemical transformation rules concluded in this study could provide valuable suggestions in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是谁还没睡完成签到 ,获得积分10
14秒前
Fluoxtine发布了新的文献求助10
32秒前
学术交流高完成签到 ,获得积分10
32秒前
凡舍完成签到 ,获得积分10
42秒前
搜集达人应助dawn采纳,获得10
56秒前
1分钟前
dawn完成签到,获得积分20
1分钟前
dawn发布了新的文献求助10
1分钟前
1分钟前
汉堡包应助Fluoxtine采纳,获得10
1分钟前
xixi发布了新的文献求助10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
kuoping完成签到,获得积分0
1分钟前
1分钟前
机灵自中完成签到,获得积分10
1分钟前
Stellarshi517发布了新的文献求助20
1分钟前
1分钟前
科研通AI6.1应助xixi采纳,获得10
1分钟前
lyw发布了新的文献求助10
2分钟前
田様应助Stellarshi517采纳,获得20
2分钟前
2分钟前
kuiuLinvk发布了新的文献求助10
2分钟前
2分钟前
kuiuLinvk完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
采薇发布了新的文献求助10
2分钟前
3分钟前
科研通AI6.1应助小博采纳,获得10
3分钟前
归尘发布了新的文献求助10
3分钟前
3分钟前
彭于晏应助凛玖niro采纳,获得10
3分钟前
Stellarshi517发布了新的文献求助20
3分钟前
3分钟前
lanxinyue应助科研通管家采纳,获得10
3分钟前
3分钟前
lanxinyue应助科研通管家采纳,获得10
3分钟前
lanxinyue应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577