Predicting Elimination of Small-Molecule Drug Half-Life in Pharmacokinetics Using Ensemble and Consensus Machine Learning Methods

均方误差 适用范围 数量结构-活动关系 支持向量机 计算机科学 机器学习 人工智能 梯度升压 交叉验证 药物发现 Boosting(机器学习) 分子描述符 数学 统计 化学 随机森林 生物化学
作者
Jianing Fan,Shaohua Shi,Hong Xiang,Li Fu,Yanjing Duan,Dongsheng Cao,Hongwei Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3080-3092 被引量:1
标识
DOI:10.1021/acs.jcim.3c02030
摘要

Half-life is a significant pharmacokinetic parameter included in the excretion phase of absorption, distribution, metabolism, and excretion. It is one of the key factors for the successful marketing of drug candidates. Therefore, predicting half-life is of great significance in drug design. In this study, we employed eXtreme Gradient Boosting (XGboost), randomForest (RF), gradient boosting machine (GBM), and supporting vector machine (SVM) to build quantitative structure–activity relationship (QSAR) models on 3512 compounds and evaluated model performance by using root-mean-square error (RMSE), R2, and mean absolute error (MAE) metrics and interpreted features by SHapley Additive exPlanation (SHAP). Furthermore, we developed consensus models through integrating four individual models and validated their performance using a Y-randomization test and applicability domain analysis. Finally, matched molecular pair analysis was used to extract the transformation rules. Our results revealed that XGboost outperformed other individual models (RMSE = 0.176, R2 = 0.845, MAE = 0.141). The consensus model integrating all four models continued to enhance prediction performance (RMSE = 0.172, R2 = 0.856, MAE = 0.138). We evaluated the reliability, robustness, and generalization ability via Y-randomization test and applicability domain analysis. Meanwhile, we utilized SHAP to interpret features and employed matched molecular pair analysis to extract chemical transformation rules that provide suggestions for optimizing drug structure. In conclusion, we believe that the consensus model developed in this study serve as a reliable tool to evaluate half-life in drug discovery, and the chemical transformation rules concluded in this study could provide valuable suggestions in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助小张同学读研版采纳,获得10
1秒前
斯文败类应助huster采纳,获得10
2秒前
可爱的函函应助QQQ采纳,获得10
2秒前
Abdulsaboor发布了新的文献求助10
3秒前
Owen应助geye采纳,获得10
3秒前
凶狠的语海完成签到,获得积分20
5秒前
5秒前
7秒前
7秒前
子非鱼完成签到,获得积分20
9秒前
半生瓜711321完成签到,获得积分10
10秒前
杳杳完成签到,获得积分10
11秒前
小只发布了新的文献求助10
11秒前
12秒前
geye完成签到,获得积分10
13秒前
13秒前
15秒前
aaa完成签到,获得积分20
16秒前
酷波er应助海豚采纳,获得10
17秒前
弥淮发布了新的文献求助10
17秒前
寒冷荧荧应助Hayat采纳,获得10
18秒前
超帅大楚发布了新的文献求助10
18秒前
糊涂的凡松完成签到,获得积分10
18秒前
会飞的鱼完成签到 ,获得积分10
19秒前
22秒前
23秒前
JamesPei应助弥淮采纳,获得10
23秒前
26秒前
27秒前
海绵宝宝发布了新的文献求助10
28秒前
28秒前
30秒前
31秒前
伶俐皮卡丘完成签到,获得积分10
31秒前
32秒前
派大星发布了新的文献求助10
32秒前
超帅大楚完成签到,获得积分10
32秒前
Owen应助彳亍采纳,获得10
33秒前
小张同学读研版完成签到,获得积分10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
花菁类近红外荧光染料的合成及光学性能研究 500
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112