Predicting Elimination of Small-Molecule Drug Half-Life in Pharmacokinetics Using Ensemble and Consensus Machine Learning Methods

均方误差 适用范围 数量结构-活动关系 支持向量机 计算机科学 机器学习 人工智能 梯度升压 交叉验证 药物发现 Boosting(机器学习) 分子描述符 数学 统计 化学 随机森林 生物化学
作者
Jianing Fan,Shaohua Shi,Hong Xiang,Li Fu,Yanjing Duan,Dongsheng Cao,Hongwei Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3080-3092 被引量:13
标识
DOI:10.1021/acs.jcim.3c02030
摘要

Half-life is a significant pharmacokinetic parameter included in the excretion phase of absorption, distribution, metabolism, and excretion. It is one of the key factors for the successful marketing of drug candidates. Therefore, predicting half-life is of great significance in drug design. In this study, we employed eXtreme Gradient Boosting (XGboost), randomForest (RF), gradient boosting machine (GBM), and supporting vector machine (SVM) to build quantitative structure-activity relationship (QSAR) models on 3512 compounds and evaluated model performance by using root-mean-square error (RMSE), R2, and mean absolute error (MAE) metrics and interpreted features by SHapley Additive exPlanation (SHAP). Furthermore, we developed consensus models through integrating four individual models and validated their performance using a Y-randomization test and applicability domain analysis. Finally, matched molecular pair analysis was used to extract the transformation rules. Our results revealed that XGboost outperformed other individual models (RMSE = 0.176, R2 = 0.845, MAE = 0.141). The consensus model integrating all four models continued to enhance prediction performance (RMSE = 0.172, R2 = 0.856, MAE = 0.138). We evaluated the reliability, robustness, and generalization ability via Y-randomization test and applicability domain analysis. Meanwhile, we utilized SHAP to interpret features and employed matched molecular pair analysis to extract chemical transformation rules that provide suggestions for optimizing drug structure. In conclusion, we believe that the consensus model developed in this study serve as a reliable tool to evaluate half-life in drug discovery, and the chemical transformation rules concluded in this study could provide valuable suggestions in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助清爽的晓啸采纳,获得10
刚刚
Yashyi发布了新的文献求助10
刚刚
1秒前
打打应助wzc采纳,获得10
1秒前
耶斯发布了新的文献求助10
2秒前
3秒前
阿星发布了新的文献求助10
3秒前
七色蔷薇完成签到,获得积分10
4秒前
无私怜容发布了新的文献求助10
4秒前
自然凌旋完成签到,获得积分10
6秒前
科研通AI6应助苒苒采纳,获得10
6秒前
6秒前
李健应助芝士采纳,获得30
6秒前
深情安青应助芝士采纳,获得10
6秒前
汉堡包应助芝士采纳,获得10
6秒前
7秒前
7秒前
Akim应助早日毕业采纳,获得10
7秒前
8秒前
szp发布了新的文献求助10
8秒前
小葵完成签到 ,获得积分10
8秒前
ding应助LHT采纳,获得10
9秒前
威龙觉醒完成签到,获得积分20
9秒前
9秒前
自然凌旋发布了新的文献求助10
9秒前
9秒前
10秒前
殷勤的帽子完成签到 ,获得积分10
11秒前
大个应助苒苒采纳,获得10
12秒前
唐宇欣完成签到,获得积分10
12秒前
13秒前
香蕉觅云应助九有乔木采纳,获得10
13秒前
cg完成签到 ,获得积分10
13秒前
13秒前
英姑应助拼搏的二哈采纳,获得10
13秒前
zz发布了新的文献求助10
13秒前
无情的宛儿完成签到,获得积分10
13秒前
13秒前
xx_y完成签到 ,获得积分10
13秒前
执笔曦倾年完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396