Predicting Elimination of Small-Molecule Drug Half-Life in Pharmacokinetics Using Ensemble and Consensus Machine Learning Methods

均方误差 适用范围 数量结构-活动关系 支持向量机 计算机科学 机器学习 人工智能 梯度升压 交叉验证 药物发现 Boosting(机器学习) 分子描述符 数学 统计 化学 随机森林 生物化学
作者
Jianing Fan,Shaohua Shi,Hong Xiang,Li Fu,Yanjing Duan,Dongsheng Cao,Hongwei Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3080-3092 被引量:4
标识
DOI:10.1021/acs.jcim.3c02030
摘要

Half-life is a significant pharmacokinetic parameter included in the excretion phase of absorption, distribution, metabolism, and excretion. It is one of the key factors for the successful marketing of drug candidates. Therefore, predicting half-life is of great significance in drug design. In this study, we employed eXtreme Gradient Boosting (XGboost), randomForest (RF), gradient boosting machine (GBM), and supporting vector machine (SVM) to build quantitative structure–activity relationship (QSAR) models on 3512 compounds and evaluated model performance by using root-mean-square error (RMSE), R2, and mean absolute error (MAE) metrics and interpreted features by SHapley Additive exPlanation (SHAP). Furthermore, we developed consensus models through integrating four individual models and validated their performance using a Y-randomization test and applicability domain analysis. Finally, matched molecular pair analysis was used to extract the transformation rules. Our results revealed that XGboost outperformed other individual models (RMSE = 0.176, R2 = 0.845, MAE = 0.141). The consensus model integrating all four models continued to enhance prediction performance (RMSE = 0.172, R2 = 0.856, MAE = 0.138). We evaluated the reliability, robustness, and generalization ability via Y-randomization test and applicability domain analysis. Meanwhile, we utilized SHAP to interpret features and employed matched molecular pair analysis to extract chemical transformation rules that provide suggestions for optimizing drug structure. In conclusion, we believe that the consensus model developed in this study serve as a reliable tool to evaluate half-life in drug discovery, and the chemical transformation rules concluded in this study could provide valuable suggestions in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钱小二发布了新的文献求助10
刚刚
刚刚
315947完成签到,获得积分10
刚刚
1秒前
冰阔落发布了新的文献求助10
1秒前
鳐鱼完成签到,获得积分10
1秒前
哈哈哈完成签到,获得积分10
1秒前
李健的小迷弟应助egnaro采纳,获得30
1秒前
没什么是看文献解决不了的完成签到,获得积分10
2秒前
害怕的凡英完成签到,获得积分10
2秒前
收集快乐发布了新的文献求助10
2秒前
青云发布了新的文献求助10
3秒前
可可完成签到 ,获得积分10
3秒前
Dank1ng完成签到,获得积分10
3秒前
星辰大海应助rinki01采纳,获得10
3秒前
哈哈哈发布了新的文献求助10
4秒前
活泼的南风完成签到 ,获得积分10
4秒前
T拐拐发布了新的文献求助10
5秒前
慕青应助yannnis采纳,获得10
5秒前
上官若男应助明明采纳,获得10
5秒前
上官若男应助过意采纳,获得10
5秒前
qly发布了新的文献求助10
5秒前
wangyalei发布了新的文献求助10
6秒前
孙福禄应助void科学家采纳,获得10
6秒前
逝者如斯只是看着完成签到,获得积分10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
ding应助轻歌水越采纳,获得10
9秒前
ding应助12334采纳,获得10
10秒前
kk完成签到 ,获得积分10
10秒前
小马甲应助芜湖采纳,获得10
11秒前
佳佳应助小慧儿采纳,获得10
11秒前
橙汁得配曼妥思完成签到,获得积分10
11秒前
李爱国应助无略采纳,获得30
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600