MD-GCCF: Multi-view deep graph contrastive learning for collaborative filtering

计算机科学 人工智能 图形 协同过滤 深度学习 机器学习 理论计算机科学 推荐系统
作者
Xinlu Li,Y. Tian,Bingbing Dong,Shengwei Ji
出处
期刊:Neurocomputing [Elsevier]
卷期号:590: 127756-127756 被引量:1
标识
DOI:10.1016/j.neucom.2024.127756
摘要

Collaborative Filtering (CF), a classical recommender system approach, learns users' interests and behavioral preferences for items through a user-item interaction graph. CF based on graph neural network (GNN) and CF based on graph contrastive learning (GCL) show strong advantages in both modeling multi-layer signals and solving label sparsity, respectively. However, there are still two key problems to be solved: Most CF models based on (1) GNN suffer from the over-smoothing problem and are unable to aggregate deep collaborative signals and (2) GCL adopts a single aggregation paradigm, resulting in a lack of diversity in the feature representation of collaborative signals. To solve the above problems, a multi-view deep graph contrastive learning for collaborative filtering (MD-GCCF) has been proposed from two perspectives. First, a deep graph collaborative signal aggregation module is proposed to learn potential intention similarity representations for deep collaborative signal propagation within a few layers. Second, a novel multi-view contrastive learning module has been proposed, utilizing both local and global contrastive learning views from the collaborative signal aggregation module to enhance deep structures and semantic features in collaborative signals. MD-GCCF improves by 9.52%, 3.34%, and 2.49% compared to the rival models, respectively, in the Amazon book, Yelp2018, and Gowalla datasets. The open source code is available: https://github.com/315TYJ/MD-GCCF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大河细流完成签到,获得积分10
刚刚
ZeKaWa应助行者无疆采纳,获得10
刚刚
4秒前
vv完成签到,获得积分10
4秒前
6秒前
黄芪完成签到 ,获得积分10
6秒前
5AGAME完成签到,获得积分10
7秒前
huangbing123完成签到 ,获得积分10
8秒前
安静的飞薇完成签到,获得积分10
9秒前
cokk发布了新的文献求助10
11秒前
超级李包包完成签到,获得积分10
11秒前
DJ完成签到,获得积分10
13秒前
科研通AI6应助jc哥采纳,获得10
13秒前
张zhang发布了新的文献求助10
14秒前
14秒前
认真做科研完成签到,获得积分10
14秒前
14秒前
15秒前
钟鸿盛Domi发布了新的文献求助10
19秒前
繁荣的又亦完成签到 ,获得积分10
19秒前
21秒前
23秒前
25秒前
ZeKaWa应助行者无疆采纳,获得10
27秒前
ivying0209发布了新的文献求助10
27秒前
31秒前
调皮雨灵完成签到,获得积分10
31秒前
zzz发布了新的文献求助10
32秒前
嘿嘿发布了新的文献求助10
34秒前
sky完成签到,获得积分10
35秒前
38秒前
red发布了新的文献求助200
38秒前
李爱国应助谈笑有鸿儒采纳,获得10
39秒前
dracovu完成签到,获得积分10
40秒前
40秒前
41秒前
涂丁元发布了新的文献求助10
43秒前
44秒前
九点半上课了完成签到,获得积分10
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915