MD-GCCF: Multi-view deep graph contrastive learning for collaborative filtering

计算机科学 人工智能 图形 协同过滤 深度学习 机器学习 理论计算机科学 推荐系统
作者
Xinlu Li,Y. Tian,Bingbing Dong,Shengwei Ji
出处
期刊:Neurocomputing [Elsevier]
卷期号:590: 127756-127756 被引量:1
标识
DOI:10.1016/j.neucom.2024.127756
摘要

Collaborative Filtering (CF), a classical recommender system approach, learns users' interests and behavioral preferences for items through a user-item interaction graph. CF based on graph neural network (GNN) and CF based on graph contrastive learning (GCL) show strong advantages in both modeling multi-layer signals and solving label sparsity, respectively. However, there are still two key problems to be solved: Most CF models based on (1) GNN suffer from the over-smoothing problem and are unable to aggregate deep collaborative signals and (2) GCL adopts a single aggregation paradigm, resulting in a lack of diversity in the feature representation of collaborative signals. To solve the above problems, a multi-view deep graph contrastive learning for collaborative filtering (MD-GCCF) has been proposed from two perspectives. First, a deep graph collaborative signal aggregation module is proposed to learn potential intention similarity representations for deep collaborative signal propagation within a few layers. Second, a novel multi-view contrastive learning module has been proposed, utilizing both local and global contrastive learning views from the collaborative signal aggregation module to enhance deep structures and semantic features in collaborative signals. MD-GCCF improves by 9.52%, 3.34%, and 2.49% compared to the rival models, respectively, in the Amazon book, Yelp2018, and Gowalla datasets. The open source code is available: https://github.com/315TYJ/MD-GCCF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是个宝耶完成签到 ,获得积分10
刚刚
慕青应助优秀的大璇采纳,获得10
1秒前
牛牛完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
FrankJeffison发布了新的文献求助10
1秒前
niNe3YUE应助Waley采纳,获得20
2秒前
欢喜的祥发布了新的文献求助20
2秒前
2秒前
2秒前
熊黛林应助端庄的寄凡采纳,获得10
3秒前
无极微光应助端庄的寄凡采纳,获得20
3秒前
11发布了新的文献求助10
3秒前
4秒前
哲别发布了新的文献求助10
4秒前
5秒前
上官若男应助limyao采纳,获得10
5秒前
Steve发布了新的文献求助10
5秒前
熊黛林完成签到,获得积分10
5秒前
wulififi发布了新的文献求助10
7秒前
xiuxiuzhang发布了新的文献求助10
9秒前
可爱的小朋友完成签到,获得积分10
10秒前
FashionBoy应助shenhongru采纳,获得10
10秒前
QQQ完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
13秒前
斯文败类应助WEAWEA采纳,获得10
14秒前
14秒前
15秒前
科研通AI2S应助如意的冰双采纳,获得10
16秒前
能干的问晴完成签到,获得积分10
17秒前
miemie66发布了新的文献求助10
17秒前
香芋完成签到 ,获得积分10
17秒前
nihao发布了新的文献求助10
17秒前
17秒前
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233