材料科学
氮化硼
环氧树脂
热导率
复合材料
电介质
扫描电子显微镜
电导率
光电子学
物理化学
化学
作者
Xubin Wang,Changhai Zhang,Tiandong Zhang,Chao Tang,Qingguo Chi
摘要
Packaging insulation materials with high thermal conductivity and excellent dielectric properties are favorable to meet the high demand and rapid development of third generation power semiconductors. In this study, we propose to improve the thermal conductivity of epoxy resin (EP) by incorporating a three-dimensional boron nitride thermally conductive network. Detailedly, polyurethane foam (PU) was used as a supporter, and boron nitride nanosheets (BNNSs) were loaded onto the PU supporter through chemical bonding (BNNS@PU). After immersing BNNS@PU into the EP resin, EP-based thermally conductive composites were prepared by vacuum-assisted impregnation. Fourier transform infrared spectrometer and scanning electron microscope were used to characterize the chemical bonding and morphological structure of BNNS@PU, respectively. The content of BNNS in BNNS@PU/EP composites was quantitatively analyzed by TGA. The results show that the thermal conductivity of the BNNS@PU/EP composites reaches 0.521 W/m K with an enhancement rate η of 30.89 at an ultra-low BNNS filler content (5.93 wt. %). Additionally, the BNNS@PU/EP composites have excellent dielectric properties with the frequency range from 101 to 106 Hz. This paper provides an interesting idea for developing high thermal conductivity insulating materials used for power semiconductor packaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI