CuNi nano-alloy loading on three-dimensional electrode for efficient nitrate electroreduction to ammonia: Performance and mechanism based on DFT calculation

材料科学 催化作用 电极 合金 碳纤维 化学工程 电化学 密度泛函理论 无机化学 复合材料 复合数 化学 物理化学 有机化学 计算化学 工程类
作者
Xinxin Shi,YinXia Nian,Yixing Wang,Junjie Zheng,Xufeng Dong,Hao Huang,Julian Shi,Yang Liu,Weihuang Zhu,Pengfei Guo,Tinglin Huang
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:61: 105320-105320 被引量:2
标识
DOI:10.1016/j.jwpe.2024.105320
摘要

Recovery of nitrogen from industrial wastewater through electrochemically reducing nitrate to ammonia attracts increasing research interest. However, conventional two-dimensional (2D) planar substrates limit the catalyst activity. Loading catalysts on three-dimensional (3D) electrodes with high specific surface area is an effective way to enhance electrode catalytic activity. In this work, we fabricated a 3D carbon brush electrode loaded with CuNi nano-alloy (CuNi/CB). The CuNi/CB achieved ammonia yield rate (NH3-Nyr) of 479.1 ± 5.3 μg h−1 cm−2 within 0.5 h, with a Faraday efficiency of 73.4 %. Compared with CuNi supported on carbon paper (CP), carbon felt (CF) and carbon cloth (CC), the NH3-Nyr of CuNi/CB were higher by 114.7, 35.2, and 26.8 times, respectively. The outstanding performance of CuNi/CB benefited from the higher specific surface area of the 3D carbon brush. Additionally, Ni doping in the CuNi catalyst reduced the accumulation of NO2− by 39.7 % and increased the NH3-Nyr by 82.9 %. Density functional theory (DFT) revealed that a shift of the d-band center toward Fermi level was likely the fundamental reason for the enhanced activity of the CuNi catalyst, comparing with single Cu catalyst. These findings offer broad prospects of efficient nitrate electroreduction to ammonia by the novel 3D electrode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
evan发布了新的文献求助30
刚刚
蓝色的鱼发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
小蘑菇应助斯文龙猫采纳,获得10
1秒前
茶博士发布了新的文献求助10
1秒前
2秒前
maox1aoxin应助正之采纳,获得150
3秒前
cui完成签到,获得积分10
3秒前
zhao完成签到 ,获得积分10
3秒前
鸢也发布了新的文献求助10
3秒前
坐宝马吃地瓜完成签到 ,获得积分10
3秒前
wkjfh应助尉迟剑心采纳,获得10
3秒前
SciGPT应助坚定紫山采纳,获得10
4秒前
科研通AI5应助真实的孤菱采纳,获得10
4秒前
我是老大应助常大美女采纳,获得30
4秒前
4秒前
Jeff完成签到,获得积分10
4秒前
南歌子完成签到 ,获得积分10
4秒前
Tangbing发布了新的文献求助10
5秒前
lxy完成签到,获得积分10
6秒前
6秒前
星辰大海应助棉花糖采纳,获得10
6秒前
科研通AI5应助陈喵喵采纳,获得10
6秒前
高贵魂幽完成签到,获得积分10
7秒前
JamesPei应助muBai嘎嘎牛采纳,获得10
7秒前
lj-TJUT完成签到 ,获得积分10
7秒前
小初发布了新的文献求助10
7秒前
Liu发布了新的文献求助30
7秒前
8秒前
9秒前
桐桐应助科研牛人采纳,获得10
9秒前
10秒前
David发布了新的文献求助10
10秒前
11秒前
12秒前
生动的平萱完成签到,获得积分20
13秒前
小白发布了新的文献求助10
13秒前
欣欣紫发布了新的文献求助10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735290
求助须知:如何正确求助?哪些是违规求助? 3279275
关于积分的说明 10013771
捐赠科研通 2995856
什么是DOI,文献DOI怎么找? 1643736
邀请新用户注册赠送积分活动 781425
科研通“疑难数据库(出版商)”最低求助积分说明 749387