Identification of control equations using low-dimensional flow representations of pitching airfoil

等距映射 非线性系统 翼型 主成分分析 稳健性(进化) 降维 非线性降维 物理 人工智能 算法 模式识别(心理学) 计算机科学 机械 生物化学 化学 量子力学 基因
作者
Zihao Wang,Guiyong Zhang,Bo Zhou,Tiezhi Sun,Jinxin Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4)
标识
DOI:10.1063/5.0205170
摘要

This study investigates the application of data-driven modeling techniques for understanding the complex dynamics of pitching airfoils at low Reynolds numbers and high angles of attack. Linear and nonlinear dimensionality reduction methods, namely principal component analysis (PCA) and isometric mapping (ISOMAP), are employed to obtain low-dimensional representations of the flow field. Subsequently, sparse identification of nonlinear dynamics (SINDy) is utilized to model the governing equations. The key findings are as follows: PCA primarily captures linear information, with the first two to three dimensions maintaining relatively low reconstruction errors. In contrast, ISOMAP excels in capturing nonlinear features, exhibiting noticeably smaller reconstruction errors. The main information is concentrated in the two-dimensional plane constructed by PCA1 and PCA2 (or ISOMAP1 and ISOMAP2). Differences in trajectory planes formed by combinations of other axes reflect flow field disparities. ISOMAP provides a nonlinear low-dimensional representation, advantageous for capturing nonlinear relationships between flow field characteristics and governing equations. The combination of ISOMAP and SINDy yields virtually no errors in identifying governing equations. Conversely, PCA and SINDy result in significantly different linear trajectories, leading to higher reconstruction errors. The identified governing equations using ISOMAP and SINDy remain consistent across different datasets, demonstrating the method's stability and robustness in accurately characterizing flow field properties under similar conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Ming采纳,获得10
1秒前
1秒前
2秒前
luca发布了新的文献求助10
2秒前
3秒前
木木 12完成签到,获得积分10
5秒前
6秒前
lan发布了新的文献求助10
7秒前
7秒前
55555发布了新的文献求助30
7秒前
MQRR发布了新的文献求助10
8秒前
9秒前
10秒前
大个应助DYP采纳,获得10
11秒前
11秒前
阳和启蛰完成签到,获得积分10
13秒前
13秒前
Meihi_Uesugi完成签到,获得积分10
16秒前
动听的一一完成签到 ,获得积分10
17秒前
吴小白完成签到 ,获得积分10
17秒前
18秒前
sunflower发布了新的文献求助10
18秒前
唧唧完成签到,获得积分20
18秒前
dopam33完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
DYP发布了新的文献求助10
22秒前
tczw667发布了新的文献求助10
23秒前
执着丝完成签到 ,获得积分10
23秒前
一鸣发布了新的文献求助10
25秒前
坛子完成签到,获得积分10
26秒前
良辰应助852采纳,获得10
27秒前
mof发布了新的文献求助10
28秒前
28秒前
笨小孩完成签到,获得积分10
31秒前
Jaden发布了新的文献求助10
32秒前
32秒前
34秒前
lan发布了新的文献求助10
34秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269474
求助须知:如何正确求助?哪些是违规求助? 2909017
关于积分的说明 8347691
捐赠科研通 2579253
什么是DOI,文献DOI怎么找? 1402733
科研通“疑难数据库(出版商)”最低求助积分说明 655478
邀请新用户注册赠送积分活动 634763