已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

0292 Detecting Sleep Deficiency with Voice Biomarkers and Machine Learning

医学 睡眠(系统调用) 听力学 心理学 计算机科学 操作系统
作者
Boyu Zhang,Joseph M. Ronda,Robin K. Yuan,Jeanne F. Duffy,Charles A. Czeisler
出处
期刊:Sleep [Oxford University Press]
卷期号:47 (Supplement_1): A126-A126
标识
DOI:10.1093/sleep/zsae067.0292
摘要

Abstract Introduction Accurate biomarkers of insufficient sleep have been a central interest of sleep scientists. Given advancements in artificial intelligence, researchers have explored non-invasive digital biomarkers from human voices. In this study, we conducted a within-participant counterbalanced controlled trial of chronic sleep restriction (CSR) and leveraged machine learning to investigate voice biomarkers for detecting sleep deficiency. Methods Healthy young adults completed a 32-day in-patient protocol. The protocol included 5 days of baseline 8-hour time-in-bed (TIB) followed by 5 days of CSR (5-hour TIB), during which their light exposure, activity, and diets were controlled. Every 4 hours during waking episodes, a voice measurement (VM) was administered via computer. During each VM, the participant read 10 sentences at their habitual volume, pitch, and pace. The sentences were phonetically balanced and tailored for professional speech quality assessment. Each VM used different sentences to prevent memorization. An omnidirectional microphone with an adjustable stand was used. 85 common acoustic features, such as fundamental frequency, formants, and mel-frequency cepstral coefficients, were extracted from each VM. Additionally, 11 features from the Cepstral Spectral Index of Dysphonia were extracted, forming a 96-dimensional vector. Within each participant, the vectors were z-scored to remove personal vocal traits. After dimension reduction via principal component analysis, under a leave-one-out procedure, we trained a support vector machine (SVM) to classify recordings into those taken during CSR or baseline. We tested the SVM on one unseen participant every iteration. Results After excluding low-quality data, we analyzed 196 VMs (100 during CSR and 96 during baseline) from 5 participants, including 1 non-native English speaker. The SVM reached a sensitivity of 0.74 (95% CI: 0.71-0.78), a specificity of 0.71% (95% CI: 0.68-0.75), and an area under the ROC curve of 0.76 (95% CI: 0.73-0.80) in classifying CSR vs. baseline conditions. Conclusion These preliminary findings reveal that vocal characteristics may represent a target for non-invasive, objective sleep deficiency biomarkers. Additional studies in both controlled conditions and field settings should be carried out to explore whether features of the human voice can be developed for non-intrusive monitoring of sleep status for sleep disorders patients, fitness-for-duty evaluations, and other applications in ambulatory settings. Support (if any)

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
十三号失眠完成签到 ,获得积分10
7秒前
领导范儿应助务实锦程采纳,获得10
9秒前
12秒前
Cheng完成签到 ,获得积分10
15秒前
two发布了新的文献求助10
17秒前
天天快乐应助努力合成采纳,获得10
29秒前
30秒前
31秒前
米粒发布了新的文献求助10
32秒前
闪闪储发布了新的文献求助10
32秒前
jarrykim完成签到,获得积分10
34秒前
listracy发布了新的文献求助10
35秒前
HelingXu发布了新的文献求助10
35秒前
Dai完成签到 ,获得积分10
47秒前
zzzz发布了新的文献求助10
50秒前
打工人不酷完成签到 ,获得积分10
50秒前
Steven发布了新的文献求助10
53秒前
FashionBoy应助王泽皓采纳,获得10
54秒前
小白发布了新的文献求助10
54秒前
57秒前
listracy完成签到,获得积分10
59秒前
共享精神应助fadungkang采纳,获得10
1分钟前
赘婿应助miaojuly采纳,获得10
1分钟前
setmefree发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
阳光女孩完成签到 ,获得积分10
1分钟前
少年完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Ccccy0819发布了新的文献求助10
1分钟前
1分钟前
setmefree发布了新的文献求助10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372734
求助须知:如何正确求助?哪些是违规求助? 2990358
关于积分的说明 8740196
捐赠科研通 2673904
什么是DOI,文献DOI怎么找? 1464748
科研通“疑难数据库(出版商)”最低求助积分说明 677662
邀请新用户注册赠送积分活动 669054