Deciphering the Microdroplet Acceleration Factors of Aza-Michael Addition Reactions

化学 溶剂化 甲胺 离解(化学) 反应机理 化学反应 甲醇 加速度 化学物理 计算化学 纳米技术 物理化学 离子 催化作用 有机化学 材料科学 物理 经典力学
作者
Zhexuan Song,Chenghui Zhu,Ke Gong,Ruijing Wang,Jianze Zhang,Supin Zhao,Ze‐Sheng Li,Xinxing Zhang,Jing Xie
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (15): 10963-10972 被引量:1
标识
DOI:10.1021/jacs.4c02312
摘要

Microdroplet chemistry is emerging as a great tool for accelerating reactions by several orders of magnitude. Several unique properties such as extreme pHs, interfacial electric fields (IEFs), and partial solvation have been reported to be responsible for the acceleration; however, which factor plays the key role remains elusive. Here, we performed quantum chemical calculations to explore the underlying mechanisms of an aza-Michael addition reaction between methylamine and acrylamide. We showed that the acceleration in methanol microdroplets results from the cumulative effects of several factors. The acidic surface of the microdroplet plays a dominating role, leading to a decrease of ∼9 kcal/mol in the activation barrier. We speculated that the dissociation of both methanol and trace water contributes to the surface acidity. An IEF of 0.1 V/Å can further decrease the barrier by ∼2 kcal/mol. Partial solvation has a negligible effect on lowering the activation barrier in microdroplets but can increase the collision frequency between reactants. With acidity revealed to be the major accelerating factor for methanol droplets, reactions on water microdroplets should have even higher rates because water is more acidic. Both theoretically and experimentally, we confirmed that water microdroplets significantly accelerate the aza-Michael reaction, achieving an acceleration factor that exceeds 107. This work elucidates the multifactorial influences on the microdroplet acceleration mechanism, and with such detailed mechanistic investigations, we anticipate that microdroplet chemistry will be an avenue rich in opportunities in the realm of green synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一口一个小面包完成签到,获得积分20
刚刚
刚刚
1秒前
darren发布了新的文献求助10
1秒前
Margaret完成签到,获得积分10
2秒前
来自山灵的风关注了科研通微信公众号
2秒前
3秒前
Jasper应助小清驴采纳,获得30
3秒前
Wayne完成签到,获得积分10
3秒前
3秒前
养猪人完成签到,获得积分10
3秒前
BaATor完成签到,获得积分20
4秒前
渣渣赵发布了新的文献求助10
4秒前
eiddn发布了新的文献求助10
4秒前
5秒前
科研通AI2S应助八戒的梦想采纳,获得10
5秒前
呆萌盼柳发布了新的文献求助10
5秒前
5秒前
郎治宇发布了新的文献求助10
6秒前
6秒前
六个核桃发布了新的文献求助10
7秒前
7秒前
洁净白容完成签到,获得积分10
8秒前
默默的彩虹完成签到 ,获得积分10
8秒前
aldehyde应助Yan采纳,获得10
8秒前
李健应助BaiX采纳,获得10
8秒前
9秒前
10秒前
CCC发布了新的文献求助10
10秒前
渔婆发布了新的文献求助10
11秒前
程程发布了新的文献求助10
11秒前
11秒前
SciGPT应助合适太清采纳,获得10
12秒前
机智水杯发布了新的文献求助10
12秒前
13秒前
13秒前
斯文败类应助外向班采纳,获得30
14秒前
英俊的铭应助Leif采纳,获得10
15秒前
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160420
求助须知:如何正确求助?哪些是违规求助? 2811548
关于积分的说明 7892779
捐赠科研通 2470529
什么是DOI,文献DOI怎么找? 1315616
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602042