已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Glioma segmentation based on dense contrastive learning and multimodal features recalibration

计算机科学 分割 人工智能 胶质瘤 医学 癌症研究
作者
Xubin Hu,Lihui Wang,Li Wang,Qijian Chen,Licheng Zheng,Yuemin Zhu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (9): 095016-095016
标识
DOI:10.1088/1361-6560/ad387f
摘要

Accurate segmentation of different regions of gliomas from multimodal magnetic resonance (MR) images is crucial for glioma grading and precise diagnosis, but many existing segmentation methods are difficult to effectively utilize multimodal MR image information to recognize accurately the lesion regions with small size, low contrast and irregular shape. To address this issue, this work proposes a novel 3D glioma segmentation model DCL-MANet. DCL-MANet has an architecture of multiple encoders and one single decoder. Each encoder is used to extract MR image features of a given modality. To overcome the entangle problems of multimodal semantic features, a dense contrastive learning (DCL) strategy is presented to extract the modality-specific and common features. Following that, feature recalibration block (RFB) based on modality-wise attention is used to recalibrate the semantic features of each modality, enabling the model to focus on the features that are beneficial for glioma segmentation. These recalibrated features are input into the decoder to obtain the segmentation results. To verify the superiority of the proposed method, we compare it with several state-of-the-art (SOTA) methods in terms of Dice, average symmetric surface distance (ASSD), HD95 and volumetric similarity (Vs). The comparison results show that the average Dice, ASSD, HD95 and Vs of DCL-MANet on all tumor regions are improved at least by 0.66%, 3.47%, 8.94% and 1.07% respectively. For small enhance tumor (ET) region, the corresponding improvement can be up to 0.37%, 7.83%, 11.32%, and 1.35%, respectively. In addition, the ablation results demonstrate the effectiveness of the proposed DCL and RFB, and combining them can significantly increase Dice (1.59%) and Vs (1.54%) while decreasing ASSD (40.51%) and HD95 (45.16%) on ET region. The proposed DCL-MANet could disentangle multimodal features and enhance the semantics of modality-dependent features, providing a potential means to accurately segment small lesion regions in gliomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fang完成签到 ,获得积分10
刚刚
科研通AI2S应助王木木采纳,获得10
1秒前
高山七石发布了新的文献求助10
2秒前
无谓发布了新的文献求助10
4秒前
Maomaoya发布了新的文献求助10
5秒前
完美时间线完成签到,获得积分10
6秒前
7秒前
泡泡儿完成签到 ,获得积分10
9秒前
华仔应助无谓采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
脑洞疼应助Sherry采纳,获得10
14秒前
15秒前
15秒前
LJH完成签到,获得积分20
15秒前
yu777完成签到,获得积分10
15秒前
15秒前
正直敏完成签到,获得积分10
16秒前
18秒前
123456发布了新的文献求助10
19秒前
Gufer完成签到,获得积分10
19秒前
blue发布了新的文献求助10
20秒前
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
相识完成签到,获得积分10
22秒前
博雅完成签到,获得积分10
24秒前
橘猫爱笑完成签到 ,获得积分10
24秒前
25秒前
小二郎应助blueweier采纳,获得10
25秒前
25秒前
希望天下0贩的0应助justice采纳,获得10
27秒前
子车茗应助123456采纳,获得20
29秒前
blue完成签到,获得积分10
29秒前
靓丽谷南发布了新的文献求助10
29秒前
慕薯殿焚发布了新的文献求助10
31秒前
su完成签到 ,获得积分10
32秒前
amier完成签到,获得积分10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666170
求助须知:如何正确求助?哪些是违规求助? 3225205
关于积分的说明 9761933
捐赠科研通 2935194
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759203
科研通“疑难数据库(出版商)”最低求助积分说明 735153