PODB: A learning-based polarimetric object detection benchmark for road scenes in adverse weather conditions

计算机科学 人工智能 目标检测 旋光法 水准点(测量) 稳健性(进化) 机器学习 人工神经网络 计算机视觉 模式识别(心理学) 数据挖掘 物理 散射 光学 地理 生物化学 化学 大地测量学 基因
作者
Zhen Zhu,Xiaobo Li,Jingsheng Zhai,Haofeng Hu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102385-102385 被引量:22
标识
DOI:10.1016/j.inffus.2024.102385
摘要

Due to its insensitivity to light intensity and the capability to capture multidimensional information, polarimetric imaging technology has been proven to have advantages over traditional intensity-based imaging techniques for object detection tasks in adverse environmental conditions, particularly in road traffic scenarios. Recently, with the rapid development of artificial intelligence technology, deep learning (DL)-powered object detection techniques can further enhance recognition accuracy and algorithm robustness. This improvement is made possible by the ability of DL technology to leverage large datasets and extract deeper levels of target-specific features. However, constructing large-scale polarimetric datasets poses challenges as obtaining polarimetric information requires multiple captures of intensity images. In other words, the workload is several times higher compared to traditional imaging techniques. To address the current scarcity of polarimetric datasets and evaluate the practical performance of various algorithms on polarimetric datasets, this paper proposes a Polarimetric Object Detection Benchmark (PODB) dataset. The PODB provides an integrated quality evaluation framework for DL-based object detection algorithms in complex road scenes by incorporating polarimetric imaging. Besides, we conducted extensive object detection experiments using the PODB, which allowed for a comprehensive validation and performance evaluation of effective benchmark algorithms. Furthermore, a physics-based multi-scale image fusion cascaded object detection neural network model is proposed. By combining the multidimensional information provided by polarized images with an adaptive learning multi-decision object detection neural network model, the recognition accuracy of complex road scenes in adverse weather conditions has been improved by approximately 10%. Additionally, we anticipate that PODB will serve as an effective platform for evaluating and comparing the performance of object detection algorithms, as well as providing researchers with a baseline for future studies in developing new DL-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CipherSage应助右右采纳,获得10
2秒前
玉衡发布了新的文献求助10
2秒前
yao chen完成签到,获得积分10
2秒前
朵拉完成签到,获得积分10
2秒前
由清涟完成签到,获得积分10
3秒前
Drhan完成签到,获得积分10
3秒前
FashionBoy应助断数循环采纳,获得10
3秒前
姣妹崽完成签到,获得积分10
3秒前
马一凡完成签到,获得积分0
3秒前
上官若男应助lan199623采纳,获得10
4秒前
俗人完成签到,获得积分10
4秒前
cangye发布了新的文献求助10
4秒前
Dotgene发布了新的文献求助10
4秒前
wanci应助CO2采纳,获得10
4秒前
joker发布了新的文献求助10
4秒前
SciGPT应助小超采纳,获得10
4秒前
4秒前
malubest完成签到,获得积分10
5秒前
华仔应助朴素的玫瑰采纳,获得30
5秒前
开心的饼干完成签到,获得积分10
6秒前
不会搞科研完成签到,获得积分0
6秒前
6秒前
6秒前
今年我必胖20斤完成签到,获得积分10
6秒前
6秒前
nini完成签到,获得积分10
7秒前
搜集达人应助1234采纳,获得10
8秒前
8秒前
Hwen完成签到,获得积分10
8秒前
susu完成签到,获得积分10
8秒前
英姑应助冷静飞柏采纳,获得10
9秒前
10秒前
10秒前
11秒前
Ryan发布了新的文献求助10
11秒前
12秒前
12秒前
cangye完成签到,获得积分10
12秒前
温暖霸完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600