PODB: A learning-based polarimetric object detection benchmark for road scenes in adverse weather conditions

计算机科学 人工智能 目标检测 旋光法 水准点(测量) 稳健性(进化) 机器学习 人工神经网络 计算机视觉 模式识别(心理学) 数据挖掘 物理 散射 光学 地理 生物化学 化学 大地测量学 基因
作者
Zhen Zhu,Xiaobo Li,Jingsheng Zhai,Haofeng Hu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102385-102385 被引量:22
标识
DOI:10.1016/j.inffus.2024.102385
摘要

Due to its insensitivity to light intensity and the capability to capture multidimensional information, polarimetric imaging technology has been proven to have advantages over traditional intensity-based imaging techniques for object detection tasks in adverse environmental conditions, particularly in road traffic scenarios. Recently, with the rapid development of artificial intelligence technology, deep learning (DL)-powered object detection techniques can further enhance recognition accuracy and algorithm robustness. This improvement is made possible by the ability of DL technology to leverage large datasets and extract deeper levels of target-specific features. However, constructing large-scale polarimetric datasets poses challenges as obtaining polarimetric information requires multiple captures of intensity images. In other words, the workload is several times higher compared to traditional imaging techniques. To address the current scarcity of polarimetric datasets and evaluate the practical performance of various algorithms on polarimetric datasets, this paper proposes a Polarimetric Object Detection Benchmark (PODB) dataset. The PODB provides an integrated quality evaluation framework for DL-based object detection algorithms in complex road scenes by incorporating polarimetric imaging. Besides, we conducted extensive object detection experiments using the PODB, which allowed for a comprehensive validation and performance evaluation of effective benchmark algorithms. Furthermore, a physics-based multi-scale image fusion cascaded object detection neural network model is proposed. By combining the multidimensional information provided by polarized images with an adaptive learning multi-decision object detection neural network model, the recognition accuracy of complex road scenes in adverse weather conditions has been improved by approximately 10%. Additionally, we anticipate that PODB will serve as an effective platform for evaluating and comparing the performance of object detection algorithms, as well as providing researchers with a baseline for future studies in developing new DL-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然冷亦发布了新的文献求助10
刚刚
刚刚
2秒前
量子星尘发布了新的文献求助150
2秒前
2秒前
2秒前
chen发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
认真烨华完成签到,获得积分20
5秒前
曹骏轩发布了新的文献求助10
6秒前
8秒前
8秒前
英俊的铭应助自然的乘云采纳,获得10
8秒前
KD发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
灵巧晓亦发布了新的文献求助10
9秒前
9秒前
科研牛马完成签到 ,获得积分10
10秒前
憨憨发布了新的文献求助10
10秒前
汉堡包应助重要海露采纳,获得10
10秒前
梦游菌给梦游菌的求助进行了留言
11秒前
思源应助研友_8RyzBZ采纳,获得10
11秒前
斯文败类应助自然笑天采纳,获得10
11秒前
13秒前
聪明忆曼完成签到,获得积分10
13秒前
13秒前
13秒前
科研通AI6应助周城采纳,获得10
14秒前
Yan完成签到,获得积分10
15秒前
IMYUYUYU发布了新的文献求助10
15秒前
15秒前
哈哈发布了新的文献求助10
16秒前
乐天林完成签到 ,获得积分10
16秒前
米饭儿完成签到 ,获得积分10
17秒前
Eternity2025应助yy采纳,获得30
17秒前
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132185
求助须知:如何正确求助?哪些是违规求助? 4333666
关于积分的说明 13501674
捐赠科研通 4170698
什么是DOI,文献DOI怎么找? 2286593
邀请新用户注册赠送积分活动 1287479
关于科研通互助平台的介绍 1228414