PODB: A learning-based polarimetric object detection benchmark for road scenes in adverse weather conditions

计算机科学 人工智能 目标检测 旋光法 水准点(测量) 稳健性(进化) 机器学习 人工神经网络 计算机视觉 模式识别(心理学) 数据挖掘 物理 散射 光学 地理 生物化学 化学 大地测量学 基因
作者
Zhen Zhu,Xiaobo Li,Jingsheng Zhai,Haofeng Hu
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102385-102385 被引量:22
标识
DOI:10.1016/j.inffus.2024.102385
摘要

Due to its insensitivity to light intensity and the capability to capture multidimensional information, polarimetric imaging technology has been proven to have advantages over traditional intensity-based imaging techniques for object detection tasks in adverse environmental conditions, particularly in road traffic scenarios. Recently, with the rapid development of artificial intelligence technology, deep learning (DL)-powered object detection techniques can further enhance recognition accuracy and algorithm robustness. This improvement is made possible by the ability of DL technology to leverage large datasets and extract deeper levels of target-specific features. However, constructing large-scale polarimetric datasets poses challenges as obtaining polarimetric information requires multiple captures of intensity images. In other words, the workload is several times higher compared to traditional imaging techniques. To address the current scarcity of polarimetric datasets and evaluate the practical performance of various algorithms on polarimetric datasets, this paper proposes a Polarimetric Object Detection Benchmark (PODB) dataset. The PODB provides an integrated quality evaluation framework for DL-based object detection algorithms in complex road scenes by incorporating polarimetric imaging. Besides, we conducted extensive object detection experiments using the PODB, which allowed for a comprehensive validation and performance evaluation of effective benchmark algorithms. Furthermore, a physics-based multi-scale image fusion cascaded object detection neural network model is proposed. By combining the multidimensional information provided by polarized images with an adaptive learning multi-decision object detection neural network model, the recognition accuracy of complex road scenes in adverse weather conditions has been improved by approximately 10%. Additionally, we anticipate that PODB will serve as an effective platform for evaluating and comparing the performance of object detection algorithms, as well as providing researchers with a baseline for future studies in developing new DL-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhdr完成签到 ,获得积分10
刚刚
bkagyin应助Zhangyu采纳,获得10
刚刚
桐桐应助SAKURA采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
金桔希子完成签到,获得积分10
1秒前
阔达的海完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
灼灼发布了新的文献求助10
3秒前
Vivian完成签到,获得积分10
3秒前
和谐碧琴发布了新的文献求助10
4秒前
Kkaioov完成签到,获得积分10
5秒前
汤襄发布了新的文献求助10
6秒前
Ying发布了新的文献求助10
6秒前
开朗发卡完成签到,获得积分10
7秒前
7秒前
dalong完成签到,获得积分0
7秒前
幸福的依瑶完成签到,获得积分10
7秒前
8秒前
小二郎应助研友_8QxayZ采纳,获得10
8秒前
111111关注了科研通微信公众号
8秒前
小林神发布了新的文献求助30
9秒前
9秒前
9秒前
csh_uyu完成签到,获得积分20
9秒前
10秒前
enterdawn完成签到,获得积分10
10秒前
开庆完成签到,获得积分10
10秒前
忧郁绫发布了新的文献求助10
11秒前
WUWEI完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
无名应助科研采纳,获得20
12秒前
小海王发布了新的文献求助10
12秒前
12秒前
今后应助杨羊羊采纳,获得10
13秒前
年轻的钢笔完成签到 ,获得积分10
13秒前
CNS冲应助charint采纳,获得50
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774034
求助须知:如何正确求助?哪些是违规求助? 5615602
关于积分的说明 15434217
捐赠科研通 4906509
什么是DOI,文献DOI怎么找? 2640270
邀请新用户注册赠送积分活动 1588076
关于科研通互助平台的介绍 1543114