已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PODB: A learning-based polarimetric object detection benchmark for road scenes in adverse weather conditions

计算机科学 人工智能 目标检测 旋光法 水准点(测量) 稳健性(进化) 机器学习 人工神经网络 计算机视觉 模式识别(心理学) 数据挖掘 生物化学 基因 光学 物理 化学 散射 地理 大地测量学
作者
Zhen Zhu,Xiaobo Li,Jingsheng Zhai,Haofeng Hu
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102385-102385 被引量:5
标识
DOI:10.1016/j.inffus.2024.102385
摘要

Due to its insensitivity to light intensity and the capability to capture multidimensional information, polarimetric imaging technology has been proven to have advantages over traditional intensity-based imaging techniques for object detection tasks in adverse environmental conditions, particularly in road traffic scenarios. Recently, with the rapid development of artificial intelligence technology, deep learning (DL)-powered object detection techniques can further enhance recognition accuracy and algorithm robustness. This improvement is made possible by the ability of DL technology to leverage large datasets and extract deeper levels of target-specific features. However, constructing large-scale polarimetric datasets poses challenges as obtaining polarimetric information requires multiple captures of intensity images. In other words, the workload is several times higher compared to traditional imaging techniques. To address the current scarcity of polarimetric datasets and evaluate the practical performance of various algorithms on polarimetric datasets, this paper proposes a Polarimetric Object Detection Benchmark (PODB) dataset. The PODB provides an integrated quality evaluation framework for DL-based object detection algorithms in complex road scenes by incorporating polarimetric imaging. Besides, we conducted extensive object detection experiments using the PODB, which allowed for a comprehensive validation and performance evaluation of effective benchmark algorithms. Furthermore, a physics-based multi-scale image fusion cascaded object detection neural network model is proposed. By combining the multidimensional information provided by polarized images with an adaptive learning multi-decision object detection neural network model, the recognition accuracy of complex road scenes in adverse weather conditions has been improved by approximately 10%. Additionally, we anticipate that PODB will serve as an effective platform for evaluating and comparing the performance of object detection algorithms, as well as providing researchers with a baseline for future studies in developing new DL-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助糊涂的不尤采纳,获得10
3秒前
8秒前
清爽冬莲发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
yu发布了新的文献求助10
16秒前
Vincent发布了新的文献求助10
19秒前
哈哈哈完成签到,获得积分10
21秒前
Cloud发布了新的文献求助10
21秒前
上官若男应助花痴的山雁采纳,获得10
21秒前
21秒前
22秒前
雪中发布了新的文献求助10
24秒前
chenhui完成签到,获得积分10
29秒前
史前巨怪完成签到,获得积分10
32秒前
Ephemeral完成签到 ,获得积分10
33秒前
35秒前
Hily完成签到,获得积分10
35秒前
沸腾的大海完成签到,获得积分10
35秒前
35秒前
YifanWang完成签到,获得积分10
36秒前
hbzyydx46发布了新的文献求助10
39秒前
冷傲的一刀完成签到,获得积分10
40秒前
YOG发布了新的文献求助10
42秒前
44秒前
Darcy完成签到,获得积分10
47秒前
49秒前
痴痴的噜完成签到,获得积分10
50秒前
马戏团小丑完成签到 ,获得积分0
53秒前
54秒前
55秒前
花痴的山雁完成签到,获得积分10
55秒前
hbzyydx46完成签到,获得积分10
57秒前
58秒前
Owen应助morena采纳,获得10
58秒前
momo发布了新的文献求助10
58秒前
58秒前
1分钟前
sweetbear发布了新的文献求助10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801834
关于积分的说明 7845817
捐赠科研通 2459180
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628638
版权声明 601727